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ABSTRACT: We assess the representation of mesoscale stirring in a suite of models against an estimate derived from micro-
structure data collected during the North Atlantic Tracer Release Experiment (NATRE). We draw heavily from the approxi-
mate temperature variance budget framework of Ferrari and Polzin. This framework assumes two sources of temperature
variance away from boundaries: first, the vertical stirring of the large-scale mean vertical gradient by small-scale turbulence; and
second, the lateral stirring of large-scale mean along-isopycnal gradients by mesoscale eddies. Temperature variance so pro-
duced is transformed and on average transferred down scales for ultimate dissipation at themicroscale at a ratex estimated using
microstructure observations. Ocean models represent these pathways by a vertical mixing parameterization, and an along-
isopycnal lateral mixing parameterization (if needed). We assess the rate of variance production by the latter as a residual from
the NATRE dataset and compare against the parameterized representations in a suite of model simulations. We find that vari-
ance production due to lateral stirring in a Parallel Ocean Program version 2 (POP2) 1/108 simulation agrees well, to within the
estimated error bars, with that inferred from the NATRE estimate. A POP2 18 simulation and the Estimating the Circulation
and Climate of the Ocean Version 4 release 4 (ECCOV4r4) simulation appear to dissipate an order of magnitude too much
variance by applying a lateral diffusivity, when compared to the NATRE estimate, particularly below 1250 m. The ECCOV4r4-
adjusted lateral diffusivities are elevated where the microstructure suggests elevated x sourced frommesoscale stirring. Such ele-
vated values are absent in other diffusivity estimates suggesting the possibility of compensating errors and caution in interpreting
ECCOV4r4’s adjusted lateral diffusivities.

SIGNIFICANCE STATEMENT: We look at whether microstructure turbulence observations can provide a useful
metric for judging the fidelity of representation of mesoscale stirring in a suite of models. We focus on the region of the
North Atlantic Tracer Release Experiment (NATRE), the site of a major ocean turbulence observation campaign, and
use an approximate variance budget framework for the region with observational estimates from Ferrari and Polzin
(2005). The approach provides a novel framework to evaluate the approximate representation of mesoscale stirring in a
variety of models.

KEYWORDS: Diapycnal mixing; Turbulence; Isopycnal mixing; General circulation models; Ocean models;
Primitive equations model

1. Introduction

Ocean tracers weakly diffuse across isopycnal surfaces, ap-
proximately surfaces of neutral density, away from boundaries.
Global estimates of an appropriate “diapycnal” diffusivity Kd

are approximately 1025 m2 s21 (Whalen et al. 2015; Munk 1966;
Kunze 2017; Waterhouse et al. 2014), and the mixing is largely
attributed to breaking internal waves (Gregg et al. 1996;
MacKinnon et al. 2017). Investigators have inferred significant
geographic variations in Kd that appear linked to bottom topo-
graphy (Kunze et al. 2006) and wind patterns (Whalen et al.
2018; Alford et al. 2016). Where large-scale T or S gradients ex-
ist along isopycnal surfaces (“spiciness”), they can be efficiently
stirred by the ocean’s mesoscale to form very sharp gradients,
visible as along-isopycnal scatter on a T–S diagram, that are
then destroyed by molecular diffusion (e.g., Smith and Ferrari

2009). For example, isopycnal maps of salinity S show the salty
Mediterranean outflow spreading westward and southward
through the northwest Atlantic at depths between approxi-
mately 800 and 1500 m (Fig. 1a). Enhanced middepth T–S
scatter is visible in the s2 5 36–36.8 kg m23 range (Fig. 2) in
Argo profiles collected at the location of the North Atlantic
Tracer Release Experiment (NATRE; Ledwell et al. 1998;
St. Laurent and Schmitt 1999; black box in Fig. 1). This along-
isopycnal salinity gradient is compensated by an approximately
equivalent along-isopycnal temperature T gradient such that
a=rT 5 b=rS, where a is the thermal expansion coefficient, b
is the haline contraction coefficient, and =r is the gradient
evaluated on isopycnal surfaces. Lateral stirring and eventual
mixing are one explanation for observations of compensated
T–S fronts in the thermocline (e.g., Ferrari and Rudnick 2000),
the other being double diffusion. Along-isopycnal surface dif-
fusivities Ke are quite large, relative to Kd, with values in the
range 500–3000 m2 s21 (R. Abernathey et al. 2022a). Accurate
representation of along-isopycnal stirring is necessary for accurate
simulation of ocean tracers, including temperature and salinity,
for climate simulations (Griffies et al. 1998). Uncertainties in the
value of Ke are consequential for the simulation of anthropogenic
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heat uptake, El Niño, and the oxygen field in a coupled model
(Gnanadesikan et al. 2015a,b, 2013).

One way to frame the relationship between stirring and dis-
sipation is through a budget for the tracer variance, e.g., T2.
Such a budget expresses a relationship between the rate of
variance production, through surface fluxes and stirring of
larger-scale gradients by smaller-scale eddies (both mesoscale
and microscale turbulence), and the rate of variance dissipa-
tion by molecular diffusion (x; section 2a). When integrated
over the global ocean and assuming equilibrium statistics,
fluid flow must transfer variance from the scales at which vari-
ance is generated to the molecular scales at which variance is
dissipated, and the rates of generation, transformation, and
dissipation must match. Oceanic models cannot resolve fluid flow
down to molecular scales and must approximately represent the

transformation of variance using parameterizations that model
the variance production term using an “eddy diffusivity” concept.
Along-isopycnal stirring is commonly represented by an along-
isopycnal diffusivity (Redi 1982), and diapycnal or approximately
vertical stirring is represented by a vertical mixing scheme (Large
et al. 1994; Jackson et al. 2008; Reichl and Hallberg 2018; Umlauf
and Burchard 2003). Observational estimates of these diffusiv-
ities, both Ke and Kd, have been derived using many techniques.
Here, we work with ocean microstructure observations that can
be used to infer Kd from an estimate of the rate of dissipation of
temperature variance x or the rate of kinetic energy dissipation e

(Osborn and Cox 1972; Gargett 1989; Gregg 1987; Osborn 1980).
Microstructure x estimates are inferred from observations of the
last stages of temperature variance transformation in the ocean.
Assuming equilibrium and fidelity, these x estimates must be re-
lated to stirring processes that are parameterized in ocean mod-
els. In this paper, we explore interpreting variance pathways and
associated parameterizations in a few models, both mesoscale-
permitting and mesoscale-parameterizing, in relation to a micro-
structure dataset collected during the NATRE (Ledwell et al.
1998; St. Laurent and Schmitt 1999), drawing heavily on the anal-
ysis by Ferrari and Polzin (2005).

2. Framework

a. Tracer variance pathways

We use the analytical framework of Ferrari and Polzin (2005)
and Garrett (2001). Davis (1994a,b) presents a rigorous assess-
ment of the assumptions and approximations used in this frame-
work. Begin with a triple decomposition of the temperature fields

T 5 Tm 1 Te 1 Tt, (1)

where the subscripts m, e, and t are loosely identified with the
“mean,” “mesoscale eddy,” and “turbulence” scales. Here, the
mean represents the basin-scale gradients over thousands of kilo-
meters similar to the isopycnal salt gradient in Fig. 1a. Turbulence
represents the scales of 10 m and smaller, including breaking in-
ternal waves and small-scale turbulent eddies. The intermediate-
scale contains everything in between mean and turbulence, that

FIG. 1. Time-mean salinity on the s2 5 36.33 kg m23 surface averaged between years 2000 and 2017. The salinity gradient on an isopyc-
nal must be compensated by an approximately equivalent temperature gradient. (a) The Argo climatology (2005–19), (b) POP 1/108 simu-
lation, (c) POP 18 simulation, and (d) the ECCO state estimate. Black box marks the location of the NATRE.

FIG. 2. Conservative Temperature–Absolute Salinity diagram
constructed using Argo profiles in the NATRE region (black box
in Fig. 1).
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is scales between a hundred kilometers and a few meters, includ-
ingmesoscale eddies and larger-scale internal waves.

We define a “large-scale averaging operator” hi that filters out
the “eddy” and turbulence scales so that hTi 5 Tm and an inter-
mediate-scale averaging operator ˜ that filters out the turbulence
scales so that T̃ 5 Tm 1 Te. Using such filters assumes a neat
separation of the three scales: mean, eddy, and turbulence. It is
not evident that such a clear separation exists in the real ocean
(Davis 1994b). However, this assumption allows us to make pro-
gress toward defining an approximate variance budget frame-
work that allows us to interpret both microstructure observations
and numerical simulations in the same context. Ferrari and Polzin
(2005) derive the complete variance budget equations for hT2

e i
and hT2

t i [their Eqs. (4.4) and (4.5)]:

1
2
(t 1 um ? =)hT2

e i 1 = ?
1
2
hueT2

e i 1 h ũtTtTei 2 kThTe=Tei
( )

1 hueTei ? =Tm 2 h ũtTt ? =Tei 52kTh|=Te|2i, (2)

1
2
(t 1 um ? =)hT2

t i 1 = ?
1
2
hutT2

t i 1 hueT̃2
t i 2 kThTt=Tti

( )

1 h ũtTt ? =(Tm 1 Te)i 52kTh|=Tt |2i: (3)

Here, u represents the three-dimensional velocity vector, = rep-
resents the full three-dimensional gradient operator, and kT is the
molecular diffusivity of temperature. Assuming stationarity, we
can drop the time derivative term in both equations. Davis
(1994a) examined these assumptions in quite some detail and con-
cluded that the assumption of stationarity is reasonable outside of
regions of strong upwelling and away from boundaries (that is ex-
ternal sources or sinks). Assuming homogeneity allows us to drop
the advection term.We a priori assume that the divergence of tur-
bulent and eddy fluxes of variance (also known as the triple prod-
uct terms, e.g., hueT2

e i) can be ignored. We follow Ferrari and
Polzin (2005) in making this assumption regardless and treat the
resulting analysis as an evaluation of consistency between models
and observations within this approximate framework.

The last term of (2), the molecular dissipation of mesoscale
gradients, is ignored since mesoscale gradients are relatively
weak. Under these assumptions, the approximate mesoscale and
turbulent temperature variance budgets are as follows:

hueTei ? =Tm 2 h ũtTt ? =Tei ’ 0, (4)

h ũtTt ? =(Tm 1 Te)i ’2
1
2
hx̃i; x 5 2kT |=Tt |2: (5)

Here, x represents the instantaneous rate of dissipation of tem-
perature variance at themolecular scale.

Equation (4), derived from that for mesoscale variance
hT2

e i, states that the mesoscale field generates variance by the
stirring of the mean and this variance cascades down to the mi-
croscale turbulence through the “scale transformation term”

xe ; hũtTt ?=Tei. Equation (5), derived from that for micro-
scale variance hT2

t i, states that the microscale turbulence stirs
the combination of the mean and eddy fields (Tm 1 Te) to gen-
erate variance that is eventually dissipated at the molecular

scale at the rate x. The scale transformation term xe is of oppo-
site sign in the two equations highlighting its role in linking the
mesoscale and microscale. Garrett (2001) presented an illus-
trative summary of these pathways (Fig. 3a).

Adding (4) and (5) yields the approximate balance,

h ũtTti ? =Tm 1 h ũeTe i ? =Tm︸������︷︷������︸
xe

’2
1
2
hxi, (6)

that is the variance dissipated at the molecular scale is approxi-
mately generated by the stirring of the mean field Tm by the
mesoscale and microscale turbulence. While hãi5 hai, we pre-
serve ˜ in (6) for clarity.

b. Variance pathways as a model diagnostic

Following Alford et al. (2005), we can further simplify (6)
assuming (i) that ut is isotropic and zTm .. =hTm, so
hũtTti ?=Tm ’ hw̃tTti ?zTm; and (ii) that mesoscale motions
stir the along-isopycnal horizontal gradient =h

rTm, so that
xe ’ hũheTei ?=h

rTm (superscript h represents the horizontal
components) yielding

hw̃tTti ?zTm 1 hũheTe i ? =h
rTm︸������︷︷������︸

xe

’2
1
2
hxi: (7)

In a mesoscale-resolving model, the second term is resolved
and we can qualitatively identify the turbulence as represent-
ing subgrid-scale motions whose effect on the mean scales is
parameterized using both a vertical mixing scheme and a lat-
eral diffusion scheme (section 4b). For coarser models where
even the mesoscale is parameterized, xe is commonly modeled
using an along-isopycnal Redi (1982) diffusivity (section 5b).
The assignment of scales here is qualitative and only influen-
ces the interpretation in what follows. For example, Alford
et al. (2005) derives (7) as a framework for interpreting obser-
vations of a 1-km scale lateral thermohaline intrusion. Our
analysis is concerned with xe, estimated as a residual from mi-
crostructure observations [difference between the rhs and the
first term on the lhs of (7)], or more directly from numerical
simulations, and other mesoscale eddy diffusivity estimates.

A large number of approximations are required to get to
this point, namely, those of homogeneity, stationarity, a priori
ignoring of the triple correlation term, and an assumption that
we are working in a region away from external sources and
sinks of variance. However, this framework has value in quali-
tatively describing the nature of variance cascades in the
ocean (Garrett 2001; Ferrari and Polzin 2005; Spingys et al.
2021; Naveira Garabato et al. 2016). Specifically, Ferrari and
Polzin (2005), Spingys et al. (2021), and Naveira Garabato
et al. (2016) estimate the rhs term hxi/2 and the first term on
the lhs hw̃tTti ?zTm using in situ microstructure data. The dif-
ference between the two terms, where statistically significant,
is then interpreted as a sign of variance production by meso-
scale eddy stirring, as we do below. Later, Smith and Ferrari
(2009) used a 1-km quasigeostrophic model initialized with
climatological fields, averaged over the NATRE region, to ex-
plicitly diagnose the eddy stirring term and find evidence for a
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similar balance in that model. Guo et al. (2022) also found an
approximate three-term balance reminiscent of (6) in most
parts of the ocean as simulated by a 1/108 Community Earth Sys-
tem Model-Parallel Ocean Program version 2 (CESM-POP2)
configuration, again suggesting that (6) is an approximate frame-
work with qualitative value.

c. Objectives

The central question of this paper is whether the estimatedme-
soscale stirring term in a mesoscale-resolving model and the

parameterized variance dissipated by Redi (1982) diffusion in
coarser models compare well against the estimated magnitude of
the scale transformation term using the NATRE observations
and the Ferrari and Polzin (2005) methodology. We compare re-
solved and parameterized mesoscale eddy stirring to an observa-
tional estimate using the variance production rate xe as a metric.
This rate is a direct output of the lateral diffusivity scheme, so the
comparison is direct in the sense of Large and Gent (1999). We
choose xe as our metric instead of an eddy diffusivityKe to avoid
further uncertainties associated with defining the mean gradient
=h
rTm (see also Alford et al. 2005), and because x is the funda-

mental turbulence quantity inferred from a microstructure mea-
surement. This choice, however, means that errors in simulating
the mean field Tm affect the interpretation of our metric xe
(section 5).

The analysis presented here is novel in that it compares realis-
tic primitive equation ocean models used in climate projection
and prediction configurationswith realistic forcing tomicrostructure-
based inferences about variance pathways in the ocean. In this
way, it differs from the work of Smith and Ferrari (2009) who
used a 1-km quasigeostrophic model to support the interpreta-
tion that mesoscale eddy stirring is the major contributor to the
scale transformation term in the NATRE region.

3. Datasets

a. NATRE microstructure dataset

The core microstructure dataset used in this analysis is that
from the NATRE (Ledwell et al. 1998; St. Laurent and Schmitt
1999), collected in April 1992 using the Woods Hole Oceano-
graphic Institution High Resolution Profiler (HRP; Schmit et al.
1988). We use vertical profiles from the “large scale survey”:
approximately 100 profiles down to 2000 dbar collected in a
400 km 3 400 km box (248–288N; 26.58–318W) as a 10 3 10 grid
at approximately 0.58 (44.4 km) spacing. These profiles contain
quality-controlled estimates of temperature, salinity, dissipation
rate of temperature variance x, and dissipation rate of turbulence
kinetic energy e at 0.5-dbar spacing. The dataset is available pub-
licly in the National Science Foundation microstructure data-
base1 (Waterhouse et al. 2014).

b. Observational estimates of Ke

We use two observational estimates of Ke, both of which use
mixing length theory to express diffusivity as

Ke ; CUe Le, (8)

where C is a constant, Ue is an appropriate velocity scale, and
Le is a length scale. The first estimate, from Cole et al. (2015),
uses a root-mean-square velocity urms 5

















hu′2 1 y ′2i

√
from the

ECCO2 state estimate (Menemenlis et al. 2008) for Ue. They
estimate a mixing length scale Le using salinity anomalies on
isopycnal surfaces,
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mesoscale 

microscale 
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residual

(b) NATRE  (Ferrari & Polzin, 2005)
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FIG. 3. Schematic of approximate tracer variance pathways. Red
crosses over dashed lines mark unresolved pathways that are pa-
rameterized. Colors match terms presented in Fig. 4. (a) Hypothe-
sis from Garrett (2001). (b) Analysis framework of Ferrari and
Polzin (2005) based on (a), but with colors matching terms in Fig. 4a.
(c) For POP 1/108 simulation. The model resolves the mean" meso-
scale pathway but the rest is parameterized through either KPP verti-
cal mixing or biharmonic lateral diffusion. Terms from Guo et al.
(2022) are rewritten in our notation. (d) For the POP 18 and ECCO
simulations. These do not resolve the mesoscale, so all pathways are
parameterized.

1 https://microstructure.ucsd.edu.
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hS′S′i√
h|=S|i : (9)

Primed quantities are defined as the anomaly relative to a
1-yr running average of that quantity q, so q′ 5 q 2 q. Salin-
ity on an isopycnal surface S is estimated using the mapped
Argo climatology of Roemmich and Gilson (2009). The
constant C is chosen to be 0.16 (Wunsch 1999; Klocker and
Abernathey 2014). These estimates are publicly available
(Cole et al. 2018).

Groeskamp et al. (2020b) estimate Ke by specifying Ue as the
root-mean-square of the geostrophic velocity urms 5












2EKE0

√
,

where EKE0 is the surface geostrophic eddy kinetic energy esti-
mated from sea surface height andLe is the first Rossby radius of
deformation calculated as the eigenvalue associated with the first
surface mode (LaCasce and Groeskamp 2020). In addition, they
account for a depth dependence of Ke that models the suppres-
sion of eddy stirring in the presence of amean flow (Klocker et al.
2012; Ferrari and Nikurashin 2010). Depth dependence arises
from the depth dependence of the mean flowU(z) and depth de-
pendence of the eddy velocity scale urms(z). The vertical struc-
ture of urms is determined by extrapolating the surface EKE
downward using a vertical mode structure estimated using
the “first surface mode” (de La Lama et al. 2016; LaCasce
2017). See Groeskamp et al. (2020b) for more details. These
estimates of Ke are also publicly available (Groeskamp et al.
2020a).

c. Simulations

We interpret the fidelity of the mesoscale stirring representa-
tion in a suite of global model integrations described below, using
theNATREobservations.

1) CESM-H POP 1/10°

Guo et al. (2022) present a closed temperature variance budget
analysis for an interannually forced simulation using the Parallel
Ocean Program version 2 (POP2; Smith et al. 2010) component
of the Community Earth System Model version 2 (CESM2;
Danabasoglu et al. 2020) with a grid of nominal 1/108 horizontal
spacing and 62 vertical levels (termed CESM-H). In the NATRE
region, the vertical grid spacing is 90–155 m between depths of
800 and 1500 m. The model configuration is similar to that of
Bryan and Bachman (2015) but is instead forced using the Jap-
anese 55-yr Reanalysis (JRA55) dataset (Tsujino et al. 2018).
This simulation uses the K-profile parameterization (KPP)
scheme (Large et al. 1994) to parameterize vertical mixing and
biharmonic viscosity and diffusivity to represent subgrid-scale
horizontal stirring and eventual mixing. Biharmonic viscosity and
diffusivity values vary with the cube of the grid spacing and have
equatorial values of 2.7 3 1010 and 3 3 109 m4 s21, respectively.
This simulation simulates the salinity field associated with the
Mediterranean outflowwith reasonable fidelity (Fig. 1b).

2) CESM-L POP 1°

We diagnose the spinup of a lower-resolution simulation,
termed CESM-L, using the CESM2 (Danabasoglu et al. 2020)

ocean component z-coordinate model POP2 (Smith et al. 2010)
at a nominal spacing of 18 and 60 vertical levels with a spacing of
90–155 m between depths of 800 and 1500 m (same as the previ-
ously described CESM-H simulation). This simulation is initial-
ized with the World Ocean Atlas 2018 (Boyer et al. 2018)
temperature and salinity fields and zero velocities following
the Ocean Model Intercomparison Project (OMIP) protocol
(Griffies et al. 2016). The simulation is integrated forwards for six
cycles or repeats of the JRA55 surface forcing (Tsujino et al.
2018).

This simulation does not resolve mesoscale eddies and relies
on an isopycnal Redi diffusivity applied using the discretization
of Griffies et al. (1998) to model along-isopycnal eddy stirring,
variance generation, and eventual dissipation. The isopycnal dif-
fusivity formulation is identical to that in CESM1 (Danabasoglu
et al. 2012), with the exception of increased values at depth
[600 m2 s21 instead of 300 m2 s21 in CESM1 (Danabasoglu et al.
2020)]. The diffusivity can be as large as 3000m2 s21 near the sur-
face and decreases with depth as a function of buoyancy fre-
quency N (Danabasoglu and Marshall 2007) with a minimum
value of 600 m2 s21 at depths deeper than approximately 2000 m.
No other lateral diffusivity is applied. This simulation uses the
KPP scheme (Large et al. 1994) to parameterize vertical mixing.

3) ECCOV4R4

The ECCO project provides a dynamically consistent global
ocean state estimate for the 1992–2011 period, constrained us-
ing a number of remote sensing and in situ datasets (Forget et al.
2015a). This configuration uses a grid with approximately 18
horizontal spacing at the equator and 50 vertical levels with grid
spacings of approximately 100 m in the NATRE region in the
800–1500-dbar range. A highlight of version 4 is that the time-
invariant three-dimensional fields of diapycnal diffusivity, iso-
pycnal Redi diffusivity Ke, and the Gent et al. (1995) coefficient
are adjusted subject to the data constraints provided, starting
from constant first guesses of 1025, 1023, and 103 m2 s21,
respectively. These adjustments significantly improve the rep-
resentation of the mean state, reduce model drift, and are
mostly sensitive to the constraints provided by the Argo data-
set (Forget et al. 2015b).

4. Results: Microstructure and mesoscale-resolving
simulations

a. Microstructure estimate: NATRE

For theNATRE region, Ferrari and Polzin (2005) estimate the
first term in (7) hw̃tTti ?zTm as well as the rhs hxi/2 using the
NATREmicrostructure data (T, S, e, x). They find significant dif-
ferences between the two terms between 800 and 1500 dbar and
interpret the differences as a sign of variance generation bymeso-
scale stirring (Fig. 4a). They define hi as a horizontal average
over the entire 400 km 3 400 km box, a vertical average over
approximately 100 m, and a time average over approximately
18 days. Averages of all quantities are computed in neutral den-
sity bins whosemean depths estimated using the data are approx-
imately 100m apart.
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They assume that buoyancy b over the O(100) m vertical
scale is dominated by temperature so that vertical diffusivities
of T and b are equal on a 100-m scale: Km

T ’Km
r . Then,

hwtTti 52Km
T (zTm) ’2Km

r (zTm): (10)

Osborn (1980) relates Kr to the average rate of dissipation of
turbulent kinetic energy e:

Km
r 5 G

hei
zbm

, (11)

with the flux coefficient G assumed to be 0.2, consistent with
recommend practice (Gregg et al. 2018). They estimate mean

vertical gradient zTm using a O(100) m linear fit along the
vertical axis to Tmeasurements in each neutral density bin.

We are able to reproduce their Fig. 10 in our Fig. 4a. We
choose to use potential temperature and practical salinity, so
that we can reproduce the usage of a neutral density variable
by Ferrari and Polzin (2005) and ensure that our results are
directly comparable. Between approximately 800 and 1500 m
(highlighted), the rate of variance dissipation hxi/2 exceeds
the variance produced by microscale stirring of the mean
Km

r zT
2
m suggesting the presence of another variance source.

The residual between these two terms is marked by purple
bars in all panels, where the width of the bars represents the
error estimates computed following the procedure outlined in

FIG. 4. Mesoscale and microscale variance production and dissipation terms averaged along density surfaces over the NATRE region
(Fig. 1) for a variety of datasets. The 800–1500-m depth range is highlighted. (a) NATRE microscale variance budget presented by Ferrari
and Polzin (2005) (red, black, labeled FP2005). The xe estimated as residual using the NATRE data (purple bars) agrees quite well with
xe from CESM-H POP2 1/108 simulation (solid purple; Guo et al. 2022). (b) Mesoscale variance budget terms from Guo et al. (2022) illus-
trating an approximate three-term balance between lateral stirring (red), vertical stirring (blue), and lateral dissipation xe (purple).
(c) The xe estimates using the Ke estimates of Groeskamp et al. (2020b) and Cole et al. (2015) and =h

rT estimated using the Argo mapped
climatology (section 4a), compared to that from NATRE and Guo et al. (2022).
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the appendix of Ferrari and Polzin (2005). This depth range is
the location of a large water mass contrast along isopycnals.
Both Ferrari and Polzin (2005) and Smith and Ferrari (2009)
argue that mesoscale stirring of the mean gradient along iso-
pycnals accounts for the necessary variance production (Fig.
3b). This inference is supported by the variance budget calcu-
lated for a mesoscale-resolving simulation (Guo et al. 2022),
as we describe next. For further discussion of the NATRE re-
sults, see Ferrari and Polzin (2005) and Smith and Ferrari
(2009).

For the remainder of the paper, keep in mind that the micro-
structure estimate suggests that in the top 2000 m of the NATRE
region, mesoscale stirring of the mean is the dominant variance
production term between approximately 800 and 1500m, andmi-
croscale stirring of the mean vertical gradient dominates the rest
of the water column. We now examine whether numerical simu-
lations reproduce this vertical dependence of the approximate
variance budget balance.

b. Diagnosing a mesoscale-resolving simulation: CESM-H
POP2 1/108

Guo et al. (2022) present a variance budget for the mesoscale,
see Eq. (7), in a 1/108 POP2 simulation. Their budget is con-
structed in depth space using a “double decomposition” of the
cell-averaged equations, which makes it a triple decomposition if
we identify the turbulence as subgrid-scale motions. In addition,
they split the resolved scale stirring, assumed to be primarily me-
soscale stirring, of the mean into horizontal and vertical portions.
The approximate mesoscale variance budget (4) can be rewritten
from

hueTei ? =Tm 2 h ũtTt ? =Tei ’ 0 (12)

to

huheTei ? =hTm︸������︷︷������︸
BCT

1 hweTeizTm︸����︷︷����︸
PKCT

2 h ũtTt ? =Tei︸�����︷︷�����︸
HDIFF1VMIX

’ 0: (13)

The term labels in (13) are reproduced from Guo et al. (2022)
to allow easy comparison. The BCT refers to “baroclinic con-
version from mean to eddy potential energy” associated with
temperature variability, PKCT refers to a potential–kinetic
energy conversion by baroclinic instability, and finally, the dis-
sipation terms due to the vertical mixing scheme and a hori-
zontal biharmonic diffusion are termed VMIX and HDIFF,
respectively. This simulation explicitly resolves mesoscale ed-
dies, their stirring of mean gradients along isopycnals, and
therefore the mean " mesoscale variance pathway. However,
the model is too coarse to convert the horizontal variability to
vertical variability to be dissipated by the vertical mixing
scheme (Smith and Ferrari 2009), since the vertical spacings
are approximately 100–150 m at the depth range of spiciness
variability. Instead, the variance generated by mesoscale stir-
ring cascades down to the grid scale where it is removed by
gridscale dissipation hũtTt ?=Tei, here a combination of KPP
vertical mixing and a biharmonic lateral diffusivity (Fig. 3c).
These two are the VMIX and HDIFF terms in Guo et al.

(2022). The remaining terms in their budget are negligible in
the NATRE region (not shown here). We can identify the
scale transformation term xe 5 h ũtTt ?=Tei as the sum of the
two dissipative terms in their analysis: VMIX and HDIFF. In
the NATRE region, the variance dissipated by the VMIX is
more than an order of magnitude smaller than that dissi-
pated by the HDIFF (not shown). In this way, biharmonic
diffusivity plays a physical role in representing the variance
pathway from the mesoscale " microscale " molecular
scale diffusion.

Figure 4b presents the three term balance in (13) from their
analysis, horizontally averaged over the 400 km 3 400 km
NATRE region and time averaged over the years 2000–19.
The vertical averaging scale is inherited from the choice of
model vertical grid, which has grid spacings of 90–155 m be-
tween depths of 800 and 1500 m. These spacings are compara-
ble to the 100-m averaging scale used by Ferrari and Polzin
(2005) and in section 4a. In the top 800 m of the water column,
spiciness or |=h

rT| is low (shown in Fig. 5b). Here, lateral eddy
stirring of Tm generates density anomalies with associated poten-
tial energy anomalies [“eddy potential energy” (EPE)]. The EPE
is then converted to EKE, so huheTei ?=hTm ’2hweTeizTm and
only a small amount of temperature variance is cascaded down to
the grid scale for dissipation. Such energy transfers are parame-
terized in coarser models using the Gent et al. (1995) scheme.
Note that if the budget was constructed in isopycnal space, this
balance would not appear.

Between ;800 and 1500 m, spiciness is large. Here, eddy stir-
ring is effective at generating T and S anomalies that are density-
compensated and have almost no density or EPE signal. Such
compensated variance is cascaded down to the grid scale for dissi-
pation by a lateral diffusivity. So, xe balances the horizontal
stirring term while the vertical mesoscale stirring term is weak
(Fig. 4b).

We can now directly compare xe in this simulation to the re-
sidual computed using the microstructure estimates (section 4a).
We find a remarkable agreement between the two in that the
simulated variance dissipation is within the error bars of the
residual from the observations. Note that the only compara-
ble previous analysis of Smith and Ferrari (2009) used a qua-
sigeostrophic model at 1-km resolution, while Guo et al.
(2022) present a closed variance budget for the mesoscale in
a realistically forced mesoscale-resolving primitive equation
simulation.

5. Results: Diagnosing coarser simulations

Coarse climate models represent the effect of along-isopycnal
stirring using a Redi (1982) diffusivityKe applied along isopycnal
surfaces (treated as approximately neutral surfaces). Cole et al.
(2015) and Groeskamp et al. (2020b) present observational esti-
mates for isopycnal Ke applicable to such coarse models. With
coarser horizontal grid spacings of 1/48 or larger, such models
cannot resolve, or at best only partially resolve, the mean "
mesoscale pathway. For such models, we estimate xe as the vari-
ance dissipated by the application of along-isopycnal diffusivity
and compare to the microstructure residual (Fig. 3d). Next,
we explore whether such a framework yields insight into the

C H ER I AN E T A L . 1189MAY 2024

Unauthenticated | Downloaded 11/01/24 05:48 PM UTC



fidelity of the diffusivity estimates and coarse models. Doing so is
complicated by the fact that such models are usually deficient
in other areas. A relevant deficiency for this analysis is a lack of
fidelity in simulating the Mediterranean outflow (Fig. 1). In vari-
ance budget terms, if the model is unable to maintain the along-
isopycnal water mass contrast it is initialized with, then it is not
going to replicate the right xe, even if it applied the right
diffusivities.

a. Assessing eddy diffusivity estimates derived from
observations

Variance production rate xe associated with the mesoscale
eddy diffusivity estimates of Cole et al. (2015) and Groeskamp
et al. (2020b) is estimated asKe|=h

rTm|2. The isopycnal horizontal
temperature gradient =h

rTm is estimated by fitting a plane to the
mapped Argo climatology temperature field on an isopycnal sur-
face over theNATREbox, following the approach of Ferrari and
Polzin (2005). Figure 4c compares these xe estimates to the
NATRE residual. While the comparison appears reasonable in
the top 1400 m or so, the values below that are approximately

one to two orders of magnitude too high. It is unclear how to in-
terpret the discrepancy given the very significant assumptions
that go into both the microstructure estimate and the Ke

estimates.
We can also compare these Ke estimates to a crude estimate

of the “effective diffusivity” of flow in the NATRE region as
simulated by the 1/108 simulation using

K̂e 5
xe

|=h
rT|2

: (14)

Again, |=h
rT| is estimated by a plane fit to the time-mean T field

along an isopycnal surface; and xe is averaged in time, interpo-
lated to density space, and then averaged over the NATRE box.
Estimates are discarded where |=h

rT|2 , 53 102138C2m22. In
the 1000–1500-dbar range, effective diffusivity values vary between
100 and 250 m2 s21 and are approximately a factor of two smaller
than the Groeskamp et al. (2020a) estimate (150–400 m2 s21). We
caution that this K̂e estimate is quite crude andmore sophisticated
methods for estimating an effective diffusivity exist (e.g., Bachman
et al. 2015, 2020).

FIG. 5. Diagnosing the spinup of a POP2 18 simulation, and ECCO, in the NATRE region. The 800–1500-m depth range is highlighted.
(a) Along-isopycnal diffusivities Ke from the POP2 integration averaged over the first month (red) and the sixth decade of integration
(blue) and estimates from Groeskamp et al. (2020b) (green) and Cole et al. (2015) (black dashed). For comparison, we also present an ef-
fective diffusivity K̂e for the POP2 1/108 simulation estimated as xe/|=h

rT
2 |. All values are averaged over the NATRE region. (b) Along-

isopycnal lateral temperature gradient |=h
rT

2 | from the Argo climatology (black) and diagnosed using plane fits for the POP2 18 integra-
tion and the POP2 1/108 integration. For consistency, the 1/108 fields are regridded to the grid of the 18 simulation before fitting the plane.
(c) The xe from the POP2 integrations and NATRE.
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b. Diagnosing CESM-L POP2 18 spinup

We diagnose the spin up of the circulation comparing the first
month and last decade of the first cycle of forcing. Simulation out-
puts include themonthly meanRedi diffusivityKe andT, S fields.
We interpolate monthly mean T andKe to isopycnal surfaces, es-
timate |=h

rT|2 using plane fits along isopycnals, and then calculate
xe 5Ke |=h

rT|2 at monthly frequency.
Averaged over the NATRE box for the first month of integra-

tion, xe compares quite well to the microstructure residual at
approximately 1000 dbar (Fig. 5c). Being initialized from ob-
servations, the initial along-isopycnal gradients agrees well
with observations (Fig. 5b). So, when a relatively accurate
along-isopycnal gradient exists, the right amount of variance
is dissipated. Deeper down between 1500 and 2000 dbar,
|=h

rT| is smaller but not negligible and in reasonable agree-
ment with the Argo climatology (Fig. 5b). Here, xe exceeds
the NATRE and POP 1/108 xe by about a factor of 30 suggest-
ing too high diffusivities Ke (Fig. 5c). This interpretation
agrees with the Groeskamp et al. (2020b) and Cole et al.
(2015) Ke estimates that show a strong decay with depth by
1500 dbar. As the model is integrated forward, =h

rT continues
to decrease and the middepth peak is significantly weaker
than the Argo climatology by the end of the first cycle of inte-
gration (Fig. 5b).

One possible interpretation is that at least in this region, the
model is not overly diffusive at 1000 dbar but instead has a prob-
lem maintaining the water mass contrast along isopycnals
through the advection of the Mediterranean outflow. This inter-
pretation is supported by the isopycnal salinity maps in Fig. 1c
where we see that the along-isopycnal salinity gradient is sig-
nificantly weaker than that in the observations much closer to
the mouth of the Mediterranean (e.g., see 308N, 208W). In
other words, errors in variance budget at 1000 dbar appear to
arise from errors in the simulation of the mean state, rather
than from errors in parameterizing the mesoscale in the
NATRE region.

Between 1500 and 2000 dbar, the vertical profile of Ke does
not decay with depth as quickly as the inferred decay of Ke from
observations (Groeskamp et al. 2020b; Cole et al. 2015). These
highKe values appear responsible for toomuch lateral dissipation
in themodel below 1500 dbar. However, remember that both the
microstructure measurements and the 1/108 model suggest that
microscale turbulence is the dominant stirring term at these
depths for the temperature variance budget. Thus, inaccuracies
inKe and xe are of minor consequence for themodel’s simulation
of the mean temperature field, but might be more consequential
for other tracers. Indeed, Danabasoglu et al. (2020) mention that
enhancedKe values at depth are used to improve the representa-
tion of passive tracers.

c. Interpreting ECCOV4r4 Ke adjustments

The ECCO simulation is of particular interest because it ad-
justs Ke to reduce misfit to observations (Forget et al. 2015b).
The ECCO configuration uses the advective form of the
Gent–McWilliams parameterization, and the isopycnal fluxes
are calculated using the symmetric Redi tensor (MITgcm
Group 2023).

K 5 Ke

1 0 Sx
0 1 Sy
Sx Sy S2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ;

Kxx 0 Kxz
0 Kyy Kyz

Kzx Kzy Kzz

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

where Sx, Sy, and Sz are the isopycnal slopes.
We reproduce the forward running simulation for ECCO re-

lease 4 version 4 following Wang and Fenty (2023) and save
monthly averages of the variance dissipation rate xe due to iso-
pycnal diffusion. We accumulate xe calculated online during
model integration using the tensor product xe;mTK

mnnT, so

xe 5 Kxx
T
x

( )2
1 Kyy

T
y

( )2
1 Kzz

T
z

( )2
1 2Kxz

T
x

T
z

1 2Kyz

T
y

T
z

: (15)

We use the same gradient estimates used by the model for cal-
culating heat fluxes due to the Redi diffusivity. The last two
terms in (15) result from the off-diagonal terms of K and are
not positive-definite. Griffies et al. (1998) present a physical
interpretation of xe in (15) as comprising two components.
The first component is an isotropic diffusion in all directions
that always decreases tracer variance and increases xe}these
are the first three terms in (15). The second component is an
alignment term that represents the action of isopycnal diffu-
sion to align tracer contours with the neutral direction}these
are the last two terms in (15). This second component
increases tracer variance and decreases xe as structure is added
to the tracer field. They show that the global integral of xe
is guaranteed to be positive. Thus, a Redi diffusivity is guar-
anteed to decrease the tracer variance globally but is not
guaranteed to do so locally since the alignment term is not
guaranteed to be positive-definite. However, we find that
xe . 0 for the ECCO estimate when averaged over the
NATRE region and proceed with interpreting the mean
profile of xe and Ke.

The ECCO adjustment process begins with a first guess for
Ke specified as a constant value of 1000 m2 s21. The adjusted
Ke has significant vertical structure; it is large in the top 500 m
and below 2000 m, where gradients are quite weak (Fig. 5a).
A middepth increase is seen between 800 and 1500 m, exactly
where |=h

rT| and the microstructure residual estimate of xe
peak. Given the xe profile in Fig. 5c, we suggest the following
interpretation. Below 1500 m, Ke strongly increases with
depth while xe strongly decreases in a manner similar to the
POP 1/108 simulation and the microstructure residual. Forget
et al. (2015b) show that the adjusted coefficients significantly
improve the simulation of the oxygen field at depth, reminis-
cent of the CESM2 usage of enhanced Ke at depth to improve
the representation of passive tracers (Danabasoglu et al.
2020). Since |=h

rT| is quite small below 2000 m, an artificially
enhanced Ke at these depths would not degrade the tempera-
ture field. Forget et al. (2015b) write that Ke adjustments are
primarily a result of adjusting to fit the Argo observations.
Given that inference, the disagreement between the middepth
peak in adjusted Ke and the Cole et al. (2015) estimate of Ke
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is intriguing. Fundamentally, the information used for both is the
same: along-isopycnal anomalies of salinity as measured by Argo
floats, but that information is interpreted using different models
and different inversion procedures to yield two qualitative differ-
ent profiles of Ke. We also note that none of the other estimates
of Ke in the region indicate a middepth peak (see Groeskamp
et al. 2020b, their Fig. 1). We then suggest interpreting the mid-
depth peak in adjusted Ke as a sign that the adjustments in the
1000–1500-m range are compensating for a different deficiency in
simulating |=h

rT|, while helping minimize the overall misfit to
Argo observations.

6. Discussion

We presented a novel attempt at analyzing the representation
of mesoscale eddy stirring in production configurations of ocean
general circulation models through a comparison against Ferrari
and Polzin (2005)’s interpretation of the NATREmicrostructure
data (section 4a). Framing the discussion of mesoscale stirring in
terms of x, the rate of dissipation of temperature variance, pro-
vides an interesting view on observational estimates and model
parameterizations of along-isopycnal eddy diffusivity Ke. For the
NATRE region, we find that the variance dissipated in the
CESM-H POP2 1/108 simulation analyzed by Guo et al. (2022)
agrees very well with an estimate of xe derived from the Ferrari
and Polzin (2005) microstructure analysis (section 4b). Applying
a similar framework to a 18 CESM-L POP2 simulation with pa-
rameterized mesoscale diffusivity paints the model as being un-
able to maintain the isopycnal water mass contrast between the
Mediterranean outflow and ambient waters, upstream of the
NATRE region (section 5b). Analysis of the ECCOV4r4 state
estimate with Ke adjusted to minimize misfit of the solution sug-
gests caution in interpreting the adjustedKe as indicative of physi-
cal processes (section 5c).

Strong inferences are lacking. For one, the method relies on
the opportunistic use of temperature as a passive tracer, and so is
limited to regions of large-scale T–S compensation (spiciness).
Second, the method requires a large number of microstructure
measurements, distributed over a large area. TheNATRE (Ferrari
and Polzin 2005) and DIMES (Naveira Garabato et al. 2016)
datasets are unique in this regard, but ultimately represent a
small part of the ocean. Even then, the error bars are quite
large and prevent concrete quantitative insights at the mo-
ment. The above considerations imply that a direct model–
data comparison, as demonstrated here, is of limited utility
in developing new mesoscale parameterizations or quantita-
tively judging high-resolution simulations. However, micro-
structure data collection is increasing rapidly, including on
novel platforms such as temperature microstructure measure-
ments on Global Ocean Ship-Based Hydrographic Investiga-
tions Program (GO-SHIP) CTD rosettes (Goto et al. 2018),
and potentially both shear and temperature microstructure on
Argo floats in the future (Roemmich et al. 2019). Expanded
collection of microstructure data, analyzed in concert with
careful analysis of high-resolutionmesoscale-resolving models
(e.g., Guo et al. 2022) as presented here, might yield more use-
ful insights in the future. Finally, we suggest that the use of a
variance budget framework, and specifically xe as a metric,

appears to be a promising way to compare high-resolution and
low-resolution oceanmodels.
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