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This worksheet draws heavily from Pedlosky (2003) Ch. 11.

1. Start with the inviscid, Boussinesq, stratified, linearized equations for an unbounded ocean.

𝜕𝑢
𝜕𝑡 − 𝑓 𝑣 = −𝜕𝑃

𝜕𝑥 (1)

𝜕𝑣
𝜕𝑡 + 𝑓 𝑢 = −𝜕𝑃

𝜕𝑦 (2)

𝜕𝑤
𝜕𝑡 = −𝜕𝑃

𝜕𝑧 − 𝑔 𝜌
𝜌0

(3)

𝜕𝑢
𝜕𝑥 + 𝜕𝑣

𝜕𝑦 + 𝜕𝑤
𝜕𝑧 = 0 (4)

𝑔
𝜌0

𝜕𝜌
𝜕𝑡 − 𝑤𝑁2 = 0 (5)

𝑁2 = − 𝑔
𝜌0

𝜕𝜌0
𝜕𝑧 , 𝑃 = 𝑝/𝜌0 (6)
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2. Your goal here is to form an equation in 𝑤. Make sure you use the continuity equation to

substitute 𝑤𝑧 in for 𝑢𝑥 + 𝑣𝑦 in the first two steps. Unfortunately, the math is a bit tedious.

a) Take the curl of equations (1) and (2) to form an equation for vorticity, 𝜁 = 𝑣𝑥 − 𝑢𝑦.

What is the physical meaning of the resulting equation?

b) Take the divergence of the equations (1) and (2) to form an equation for 𝑢𝑥 + 𝑣𝑦. You

should get

𝑤𝑡𝑧 + 𝑓 𝜁 = ∇2
ℎ𝑃

c) Eliminate 𝜁 .

d) Eliminate 𝜌 between equations (5) and (3)



3

3. Now you can eliminate 𝑃 and after some algebra, you should get the wave equation in 𝑤.

𝜕2

𝜕𝑡2 [∇2𝑤] + 𝑓 2 𝜕2𝑤
𝜕𝑧2 + 𝑁2∇2

ℎ𝑤 = 0 (7)

Obtain the plane wave dispersion relation by plugging in the wave solution

𝑤 ∼ exp [𝑖(𝑘𝑥 + 𝑙𝑦 + 𝑚𝑧 − 𝜔𝑡)] .

Write it in terms of angle 𝜙 such that tan 𝜙 = 𝑚2/𝑘2
𝐻 = 𝑚2/(𝑘2 + 𝑙2). Can you recover the

non-rotating dispersion relation derived earlier in the term?

4. Use sin2 𝜙 = 1 − cos2 𝜙 and 𝑁2 ≫ 𝑓 2 generally in the ocean to obtain bounds on valid

wave solutions for 𝜔. This is the internal wave band.
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5. Now look at Pedlosky (2003) Figure 11.1. The bounds on 𝜔 have important consequences.

a) What happens if you force the ocean at an 𝜔 that is outside these bounds?

b) In the real ocean 𝑓 is a function of latitude. Consider a wave that is 𝜔 = 1.01𝑓 moving

northward so 𝑓 is increasing as the wave travels. What might happen?

c) How about a wave moving downwards into water that is less stratified?

6. Now that you have a dispersion relation, can you calculate group and phase velocities?

Write the expressions, no need to substitute in for 𝜔

7. After some algebra and re-orienting so that the 𝑥 axis is along the wave path 𝑙 = 0 and

𝑘ℎ = 𝑘, you should get (using 𝐾2 = 𝑚2 + 𝑘2 )

(𝑐𝑥
𝑔, 𝑐𝑧

𝑔) = (𝑁2 − 𝑓 2)
𝜔𝐾4 𝑚𝑘(𝑚, −𝑘) (8)

What can you say about the signs of vertical phase speed 𝑐𝑧
𝑝 and vertical group velocity

𝑐𝑧
𝑔? Do the same for horizontal phase speeds and group velocities.
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8. Mark the vertical directions of phase and energy propagation on Figure 1.

Figure 1: Zonal shear 𝑢𝑧 from Alford et al. (2016) - Near Inertial Gravity Waves in the Ocean.

9. Start with this form of the dispersion relation

𝜔2 =
𝑓 2𝑚2 + 𝑁2𝑘2

𝐻
𝑚2 + 𝑘2

𝐻

What can you say about typical horizontal and vertical length scales in the ocean? Write

that approximation in terms of 𝑚 and 𝑘𝐻 . Use that to simplify this equation.
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10. In the rotated frame, we can use 𝑤 = 𝑤0 exp [𝑖(𝑘𝑥 + 𝑚𝑧 − 𝜔𝑡)] and obtain

𝑃 = −(𝑁2 − 𝑓 2)
𝑚𝜔 𝑤0 exp [𝑖(𝑘𝑥 + 𝑚𝑧 − 𝜔𝑡)] (9)

𝑢 = −𝑚
𝑘 𝑤0 exp [𝑖(𝑘𝑥 + 𝑚𝑧 − 𝜔𝑡)] (10)

Note that there are no variations in 𝑦, 𝜕𝑦𝛼 = 0 for any wave quantity 𝛼. Is 𝑣 = 0?

11. What does the sum 𝑢2 + 𝑣2 tell you about the variation of the velocity vector with time?

12. So far, we have ignored boundaries. Consider an ocean bounded between a rigid lid and

flat bottom. What constraints does this place on the dispersion relation you derived in step

3?
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13. Key points:

a) A lot of characteristics from the non-rotating case carry over to rotating internal

waves.

b) The biggest difference is the introduction of a lower bound on frequency — 𝑓 . The

upper bound 𝑁 stays the same in both rotating and non-rotating cases. This means

that the ocean has an internal wave band.


