TAO Ri analysis#
Analysis of bulk & gradient Ri with TAO data
%load_ext watermark
import dask
import dcpy
import distributed
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr
import cf_xarray
import pump
dask.config.set({"array.slicing.split_large_chunks": True})
mpl.rcParams["figure.dpi"] = 140
%watermark -iv
The watermark extension is already loaded. To reload it, use:
%reload_ext watermark
cf_xarray : 0.4.1.dev21+gab9dc66
xarray : 0.17.1.dev3+g48378c4b1
dask : 2021.3.0
dcpy : 0.1
numpy : 1.20.1
distributed: 2021.3.0
pump : 0.1
matplotlib : 3.3.4
Next steps#
Make a merged velocity dataset
Add 147E to merged dataset
Try the Pham extrapolation
no since I just ignore the near-surface
Do something about eucmax in El-Nino years
eucmax = 25 before 1996?
eucmax at 156E, 165E
165E doesn’t really have much data at all
deal with euc shoaling
Where is the high-res Ucur, Vcur for 2012-ish? It’s present in the daily data
I need to interpolate the density field to get a good dens_euc
I will need to
Recalculate bulk Ri stuff. This really shouldn’t change much?
Scatter median gradient Ri against the new bulk Ri
What the heck is going on at 195W. Marginal stability?
barrier & isothermal layers
Ri_g quantile analysis#
Ri_q_old = xr.open_dataset("tao-hourly-Ri-seasonal-percentiles-before-salinity.nc")
Ri_q_old
<xarray.Dataset> Dimensions: (longitude: 5, quantile: 3, season: 4, zeuc: 59) Coordinates: * season (season) object 'DJF' 'MAM' 'JJA' 'SON' * longitude (longitude) float64 -204.0 -195.0 -170.0 -140.0 -110.0 * zeuc (zeuc) float64 -47.5 -42.5 -37.5 -32.5 ... 232.5 237.5 242.5 * quantile (quantile) float64 0.25 0.5 0.75 latitude float32 0.0 num_obs (season, longitude, zeuc) int64 2956 3450 3685 4162 ... 0 0 0 0 Data variables: Rig (season, longitude, zeuc, quantile) float64 0.8657 1.847 ... nan
- longitude: 5
- quantile: 3
- season: 4
- zeuc: 59
- season(season)object'DJF' 'MAM' 'JJA' 'SON'
array(['DJF', 'MAM', 'JJA', 'SON'], dtype=object)
- longitude(longitude)float64-204.0 -195.0 -170.0 -140.0 -110.0
array([-204., -195., -170., -140., -110.])
- zeuc(zeuc)float64-47.5 -42.5 -37.5 ... 237.5 242.5
- long_name :
- Depth relative to EUC max
- units :
- m
array([-47.5, -42.5, -37.5, -32.5, -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5, 52.5, 57.5, 62.5, 67.5, 72.5, 77.5, 82.5, 87.5, 92.5, 97.5, 102.5, 107.5, 112.5, 117.5, 122.5, 127.5, 132.5, 137.5, 142.5, 147.5, 152.5, 157.5, 162.5, 167.5, 172.5, 177.5, 182.5, 187.5, 192.5, 197.5, 202.5, 207.5, 212.5, 217.5, 222.5, 227.5, 232.5, 237.5, 242.5])
- quantile(quantile)float640.25 0.5 0.75
array([0.25, 0.5 , 0.75])
- latitude()float32...
- FORTRAN_format :
- epic_code :
- 500
- type :
- EVEN
- units :
- degree_north
array(0., dtype=float32)
- num_obs(season, longitude, zeuc)int64...
array([[[ 2956, 3450, ..., 4, 2], [22817, 25754, ..., 0, 0], ..., [40789, 41316, ..., 0, 0], [27273, 27607, ..., 0, 0]], [[ 3942, 4331, ..., 10, 0], [27042, 29336, ..., 0, 0], ..., [38881, 39267, ..., 0, 0], [31340, 31356, ..., 0, 0]], [[ 3745, 3967, ..., 4, 4], [30141, 32217, ..., 0, 0], ..., [37250, 37493, ..., 0, 0], [32708, 32693, ..., 0, 0]], [[ 1779, 2291, ..., 179, 102], [26847, 29380, ..., 1, 0], ..., [42768, 43177, ..., 0, 0], [29005, 29049, ..., 0, 0]]])
- Rig(season, longitude, zeuc, quantile)float64...
array([[[[0.865717, ..., 4.079292], ..., [0.630251, ..., 1.289024]], ..., [[0.412665, ..., 1.39942 ], ..., [ nan, ..., nan]]], ..., [[[0.720142, ..., 3.422668], ..., [0.340165, ..., 1.531448]], ..., [[0.420117, ..., 1.420033], ..., [ nan, ..., nan]]]])
Ri_q = xr.open_dataset("tao-hourly-Ri-seasonal-percentiles-2.nc")
Ri_q
Ri = xr.concat(
[
Ri_q_old.Rig,
Ri_q.Rig_T,
Ri_q.Ri,
],
dim="kind",
)
counts = xr.concat(
[
Ri_q_old.num_obs.reset_coords(drop=True),
Ri_q.num_Rig_T.reset_coords(drop=True),
Ri_q.num_Rig.reset_coords(drop=True),
],
dim="kind",
)
counts["kind"] = ["$Ri^T_{old}$", "$Ri_g^T$", "$Ri_g$"]
counts.name = "count"
merged = xr.Dataset()
merged["Rig"] = Ri
merged["counts"] = counts
merged = merged.reindex(season=["DJF", "MAM", "JJA", "SON"])
merged
<xarray.Dataset> Dimensions: (kind: 3, longitude: 5, quantile: 3, season: 4, zeuc: 59) Coordinates: * season (season) <U3 'DJF' 'MAM' 'JJA' 'SON' * kind (kind) object '$Ri^T_{old}$' '$Ri_g^T$' '$Ri_g$' reference_pressure int64 0 num_Rig_T (season, longitude, zeuc) int64 2949 3436 3665 ... 0 0 0 num_Rig (season, longitude, zeuc) int64 169 352 545 ... 0 0 0 * longitude (longitude) float64 -204.0 -195.0 -170.0 -140.0 -110.0 * zeuc (zeuc) float64 -47.5 -42.5 -37.5 ... 232.5 237.5 242.5 * quantile (quantile) float64 0.25 0.5 0.75 latitude float32 0.0 num_obs (season, longitude, zeuc) int64 2956 3450 3685 ... 0 0 0 Data variables: Rig (kind, season, longitude, zeuc, quantile) float64 0.8... counts (kind, season, longitude, zeuc) int64 2956 3450 ... 0 0
- kind: 3
- longitude: 5
- quantile: 3
- season: 4
- zeuc: 59
- season(season)<U3'DJF' 'MAM' 'JJA' 'SON'
array(['DJF', 'MAM', 'JJA', 'SON'], dtype='<U3')
- kind(kind)object'$Ri^T_{old}$' '$Ri_g^T$' '$Ri_g$'
array(['$Ri^T_{old}$', '$Ri_g^T$', '$Ri_g$'], dtype=object)
- reference_pressure()int640
- units :
- dbar
array(0)
- num_Rig_T(season, longitude, zeuc)int642949 3436 3665 4140 ... 0 0 0 0
array([[[ 2949, 3436, 3665, ..., 8, 2, 2], [22695, 25636, 27285, ..., 0, 0, 0], [30060, 30579, 31051, ..., 0, 0, 0], [39508, 40353, 41057, ..., 0, 0, 0], [26767, 27165, 27468, ..., 0, 0, 0]], [[ 3910, 4307, 4590, ..., 18, 13, 0], [27011, 29293, 30305, ..., 0, 0, 0], [31420, 31635, 31916, ..., 0, 0, 0], [38853, 39234, 39571, ..., 0, 0, 0], [30388, 30728, 31098, ..., 0, 0, 0]], [[ 3705, 3930, 4040, ..., 6, 1, 2], [30034, 32135, 33017, ..., 0, 0, 0], [31549, 31586, 31572, ..., 0, 0, 0], [36519, 36976, 37473, ..., 0, 0, 0], [32080, 32167, 32249, ..., 0, 0, 0]], [[ 1723, 2242, 2596, ..., 201, 107, 67], [26696, 29262, 30858, ..., 4, 1, 0], [28562, 28879, 29082, ..., 0, 0, 0], [40933, 41621, 42284, ..., 0, 0, 0], [28335, 28505, 28637, ..., 0, 0, 0]]])
- num_Rig(season, longitude, zeuc)int64169 352 545 672 999 ... 0 0 0 0 0
array([[[ 169, 352, 545, ..., 11, 4, 2], [ 59, 96, 190, ..., 0, 0, 0], [ 128, 115, 119, ..., 0, 0, 0], [ 4, 20, 138, ..., 0, 0, 0], [4624, 5697, 6765, ..., 0, 0, 0]], [[ 506, 633, 841, ..., 19, 13, 0], [ 43, 66, 102, ..., 1, 0, 0], [ 40, 77, 180, ..., 0, 0, 0], [1523, 2686, 3970, ..., 0, 0, 0], [7473, 8296, 9028, ..., 0, 0, 0]], [[ 819, 900, 1026, ..., 7, 3, 2], [ 366, 492, 728, ..., 0, 0, 0], [ 316, 472, 673, ..., 0, 0, 0], [ 693, 1391, 2495, ..., 0, 0, 0], [5590, 6728, 7958, ..., 0, 0, 0]], [[ 12, 12, 16, ..., 237, 128, 73], [ 31, 37, 53, ..., 8, 1, 0], [ 28, 22, 68, ..., 0, 0, 0], [ 129, 319, 759, ..., 0, 0, 0], [3018, 4058, 5302, ..., 0, 0, 0]]])
- longitude(longitude)float64-204.0 -195.0 -170.0 -140.0 -110.0
array([-204., -195., -170., -140., -110.])
- zeuc(zeuc)float64-47.5 -42.5 -37.5 ... 237.5 242.5
- long_name :
- Depth relative to EUC max
- units :
- m
array([-47.5, -42.5, -37.5, -32.5, -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5, 52.5, 57.5, 62.5, 67.5, 72.5, 77.5, 82.5, 87.5, 92.5, 97.5, 102.5, 107.5, 112.5, 117.5, 122.5, 127.5, 132.5, 137.5, 142.5, 147.5, 152.5, 157.5, 162.5, 167.5, 172.5, 177.5, 182.5, 187.5, 192.5, 197.5, 202.5, 207.5, 212.5, 217.5, 222.5, 227.5, 232.5, 237.5, 242.5])
- quantile(quantile)float640.25 0.5 0.75
array([0.25, 0.5 , 0.75])
- latitude()float320.0
- FORTRAN_format :
- epic_code :
- 500
- type :
- EVEN
- units :
- degree_north
array(0., dtype=float32)
- num_obs(season, longitude, zeuc)int642956 3450 3685 4162 ... 0 0 0 0
array([[[ 2956, 3450, ..., 4, 2], [22817, 25754, ..., 0, 0], ..., [40789, 41316, ..., 0, 0], [27273, 27607, ..., 0, 0]], [[ 3942, 4331, ..., 10, 0], [27042, 29336, ..., 0, 0], ..., [38881, 39267, ..., 0, 0], [31340, 31356, ..., 0, 0]], [[ 3745, 3967, ..., 4, 4], [30141, 32217, ..., 0, 0], ..., [37250, 37493, ..., 0, 0], [32708, 32693, ..., 0, 0]], [[ 1779, 2291, ..., 179, 102], [26847, 29380, ..., 1, 0], ..., [42768, 43177, ..., 0, 0], [29005, 29049, ..., 0, 0]]])
- Rig(kind, season, longitude, zeuc, quantile)float640.8657 1.847 4.079 ... nan nan nan
array([[[[[8.65716985e-01, 1.84699736e+00, 4.07929186e+00], [9.68607747e-01, 2.07586669e+00, 4.69831821e+00], [1.12714689e+00, 2.45510051e+00, 5.63565819e+00], ..., [8.25933339e-01, 1.21812980e+00, 2.22266901e+00], [3.31773526e-02, 2.15271859e-01, 6.91555336e-01], [6.30251313e-01, 9.59637420e-01, 1.28902353e+00]], [[7.71597015e-01, 1.43807574e+00, 3.14489151e+00], [8.06376970e-01, 1.53085922e+00, 3.27291715e+00], [8.95512070e-01, 1.70564919e+00, 3.66061253e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[1.07121354e+00, 1.87813410e+00, 3.69584450e+00], [1.11844147e+00, 2.00944921e+00, 4.03503153e+00], [1.19428670e+00, 2.16651316e+00, 4.50967620e+00], ..., ... ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[2.74066945e-01, 5.01354576e-01, 9.80485998e-01], [2.98458848e-01, 5.60613869e-01, 1.12126112e+00], [3.33510960e-01, 6.25650997e-01, 1.17076899e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[4.21693072e-01, 8.59172765e-01, 2.15610164e+00], [4.34104306e-01, 9.20512613e-01, 2.19139397e+00], [4.83682792e-01, 1.01935381e+00, 2.25328889e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]]]]])
- counts(kind, season, longitude, zeuc)int642956 3450 3685 4162 ... 0 0 0 0
array([[[[ 2956, 3450, 3685, ..., 11, 4, 2], [22817, 25754, 27364, ..., 0, 0, 0], [29978, 30529, 31016, ..., 0, 0, 0], [40789, 41316, 41728, ..., 0, 0, 0], [27273, 27607, 27845, ..., 0, 0, 0]], [[ 3942, 4331, 4609, ..., 16, 10, 0], [27042, 29336, 30343, ..., 0, 0, 0], [31353, 31568, 31847, ..., 0, 0, 0], [38881, 39267, 39605, ..., 0, 0, 0], [31340, 31356, 31372, ..., 0, 0, 0]], [[ 3745, 3967, 4061, ..., 12, 4, 4], [30141, 32217, 33078, ..., 0, 0, 0], [31564, 31593, 31603, ..., 0, 0, 0], [37250, 37493, 37817, ..., 0, 0, 0], [32708, 32693, 32707, ..., 0, 0, 0]], [[ 1779, 2291, 2663, ..., 302, 179, 102], [26847, 29380, 30913, ..., 9, 1, 0], ... [ 4, 20, 138, ..., 0, 0, 0], [ 4624, 5697, 6765, ..., 0, 0, 0]], [[ 506, 633, 841, ..., 19, 13, 0], [ 43, 66, 102, ..., 1, 0, 0], [ 40, 77, 180, ..., 0, 0, 0], [ 1523, 2686, 3970, ..., 0, 0, 0], [ 7473, 8296, 9028, ..., 0, 0, 0]], [[ 819, 900, 1026, ..., 7, 3, 2], [ 366, 492, 728, ..., 0, 0, 0], [ 316, 472, 673, ..., 0, 0, 0], [ 693, 1391, 2495, ..., 0, 0, 0], [ 5590, 6728, 7958, ..., 0, 0, 0]], [[ 12, 12, 16, ..., 237, 128, 73], [ 31, 37, 53, ..., 8, 1, 0], [ 28, 22, 68, ..., 0, 0, 0], [ 129, 319, 759, ..., 0, 0, 0], [ 3018, 4058, 5302, ..., 0, 0, 0]]]])
merged.counts.plot.line(
hue="season", row="kind", y="zeuc", col="longitude", xscale="linear"
)
<xarray.plot.facetgrid.FacetGrid at 0x7fe05af53eb0>

with mpl.rc_context(pump.plot.sm13_cycler):
fg = (
merged.Rig.isel(quantile=1)
.where(merged.counts > 1000)
.plot.line(hue="season", row="kind", y="zeuc", col="longitude", xlim=(0, 3))
)
fg.map(lambda: dcpy.plots.linex(0.25))
fg.map(lambda: dcpy.plots.liney(0))
<xarray.plot.facetgrid.FacetGrid at 0x7fe05e262310>

Argo: How “important” is salinity to N²#
argo = dcpy.oceans.read_argo_clim()
argo
<xarray.Dataset> Dimensions: (lat: 145, lon: 360, pres: 58, time: 180) Coordinates: * lon (lon) float32 20.5 21.5 22.5 23.5 ... 377.5 378.5 379.5 * lat (lat) float32 -64.5 -63.5 -62.5 -61.5 ... 77.5 78.5 79.5 * pres (pres) float32 2.5 10.0 20.0 ... 1.8e+03 1.9e+03 1.975e+03 * time (time) datetime64[ns] 2004-01-16 2004-02-15 ... 2018-09-29 Data variables: Tmean (pres, lat, lon) float32 dask.array<chunksize=(58, 20, 60), meta=np.ndarray> Tanom (time, pres, lat, lon) float32 dask.array<chunksize=(180, 58, 20, 60), meta=np.ndarray> BATHYMETRY_MASK (pres, lat, lon) float32 dask.array<chunksize=(58, 20, 60), meta=np.ndarray> MAPPING_MASK (pres, lat, lon) float32 dask.array<chunksize=(58, 20, 60), meta=np.ndarray> T (time, pres, lat, lon) float32 dask.array<chunksize=(180, 58, 20, 60), meta=np.ndarray> Smean (pres, lat, lon) float32 dask.array<chunksize=(58, 20, 60), meta=np.ndarray> Sanom (time, pres, lat, lon) float32 dask.array<chunksize=(180, 58, 20, 60), meta=np.ndarray> S (time, pres, lat, lon) float32 dask.array<chunksize=(180, 58, 20, 60), meta=np.ndarray>
- lat: 145
- lon: 360
- pres: 58
- time: 180
- lon(lon)float3220.5 21.5 22.5 ... 378.5 379.5
- units :
- degrees_east
- modulo :
- 360.0
- point_spacing :
- even
- axis :
- X
array([ 20.5, 21.5, 22.5, ..., 377.5, 378.5, 379.5], dtype=float32)
- lat(lat)float32-64.5 -63.5 -62.5 ... 78.5 79.5
- units :
- degrees_north
- point_spacing :
- even
- axis :
- Y
array([-64.5, -63.5, -62.5, -61.5, -60.5, -59.5, -58.5, -57.5, -56.5, -55.5, -54.5, -53.5, -52.5, -51.5, -50.5, -49.5, -48.5, -47.5, -46.5, -45.5, -44.5, -43.5, -42.5, -41.5, -40.5, -39.5, -38.5, -37.5, -36.5, -35.5, -34.5, -33.5, -32.5, -31.5, -30.5, -29.5, -28.5, -27.5, -26.5, -25.5, -24.5, -23.5, -22.5, -21.5, -20.5, -19.5, -18.5, -17.5, -16.5, -15.5, -14.5, -13.5, -12.5, -11.5, -10.5, -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5, 63.5, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5, 75.5, 76.5, 77.5, 78.5, 79.5], dtype=float32)
- pres(pres)float322.5 10.0 20.0 ... 1.9e+03 1.975e+03
- units :
- dbar
- positive :
- down
- point_spacing :
- uneven
- axis :
- Z
array([ 2.5, 10. , 20. , 30. , 40. , 50. , 60. , 70. , 80. , 90. , 100. , 110. , 120. , 130. , 140. , 150. , 160. , 170. , 182.5, 200. , 220. , 240. , 260. , 280. , 300. , 320. , 340. , 360. , 380. , 400. , 420. , 440. , 462.5, 500. , 550. , 600. , 650. , 700. , 750. , 800. , 850. , 900. , 950. , 1000. , 1050. , 1100. , 1150. , 1200. , 1250. , 1300. , 1350. , 1412.5, 1500. , 1600. , 1700. , 1800. , 1900. , 1975. ], dtype=float32)
- time(time)datetime64[ns]2004-01-16 ... 2018-09-29
- axis :
- T
array(['2004-01-16T00:00:00.000000000', '2004-02-15T00:00:00.000000000', '2004-03-16T00:00:00.000000000', '2004-04-15T00:00:00.000000000', '2004-05-15T00:00:00.000000000', '2004-06-14T00:00:00.000000000', '2004-07-14T00:00:00.000000000', '2004-08-13T00:00:00.000000000', '2004-09-12T00:00:00.000000000', '2004-10-12T00:00:00.000000000', '2004-11-11T00:00:00.000000000', '2004-12-11T00:00:00.000000000', '2005-01-10T00:00:00.000000000', '2005-02-09T00:00:00.000000000', '2005-03-11T00:00:00.000000000', '2005-04-10T00:00:00.000000000', '2005-05-10T00:00:00.000000000', '2005-06-09T00:00:00.000000000', '2005-07-09T00:00:00.000000000', '2005-08-08T00:00:00.000000000', '2005-09-07T00:00:00.000000000', '2005-10-07T00:00:00.000000000', '2005-11-06T00:00:00.000000000', '2005-12-06T00:00:00.000000000', '2006-01-05T00:00:00.000000000', '2006-02-04T00:00:00.000000000', '2006-03-06T00:00:00.000000000', '2006-04-05T00:00:00.000000000', '2006-05-05T00:00:00.000000000', '2006-06-04T00:00:00.000000000', '2006-07-04T00:00:00.000000000', '2006-08-03T00:00:00.000000000', '2006-09-02T00:00:00.000000000', '2006-10-02T00:00:00.000000000', '2006-11-01T00:00:00.000000000', '2006-12-01T00:00:00.000000000', '2006-12-31T00:00:00.000000000', '2007-01-30T00:00:00.000000000', '2007-03-01T00:00:00.000000000', '2007-03-31T00:00:00.000000000', '2007-04-30T00:00:00.000000000', '2007-05-30T00:00:00.000000000', '2007-06-29T00:00:00.000000000', '2007-07-29T00:00:00.000000000', '2007-08-28T00:00:00.000000000', '2007-09-27T00:00:00.000000000', '2007-10-27T00:00:00.000000000', '2007-11-26T00:00:00.000000000', '2007-12-26T00:00:00.000000000', '2008-01-25T00:00:00.000000000', '2008-02-24T00:00:00.000000000', '2008-03-25T00:00:00.000000000', '2008-04-24T00:00:00.000000000', '2008-05-24T00:00:00.000000000', '2008-06-23T00:00:00.000000000', '2008-07-23T00:00:00.000000000', '2008-08-22T00:00:00.000000000', '2008-09-21T00:00:00.000000000', '2008-10-21T00:00:00.000000000', '2008-11-20T00:00:00.000000000', '2008-12-20T00:00:00.000000000', '2009-01-19T00:00:00.000000000', '2009-02-18T00:00:00.000000000', '2009-03-20T00:00:00.000000000', '2009-04-19T00:00:00.000000000', '2009-05-19T00:00:00.000000000', '2009-06-18T00:00:00.000000000', '2009-07-18T00:00:00.000000000', '2009-08-17T00:00:00.000000000', '2009-09-16T00:00:00.000000000', '2009-10-16T00:00:00.000000000', '2009-11-15T00:00:00.000000000', '2009-12-15T00:00:00.000000000', '2010-01-14T00:00:00.000000000', '2010-02-13T00:00:00.000000000', '2010-03-15T00:00:00.000000000', '2010-04-14T00:00:00.000000000', '2010-05-14T00:00:00.000000000', '2010-06-13T00:00:00.000000000', '2010-07-13T00:00:00.000000000', '2010-08-12T00:00:00.000000000', '2010-09-11T00:00:00.000000000', '2010-10-11T00:00:00.000000000', '2010-11-10T00:00:00.000000000', '2010-12-10T00:00:00.000000000', '2011-01-09T00:00:00.000000000', '2011-02-08T00:00:00.000000000', '2011-03-10T00:00:00.000000000', '2011-04-09T00:00:00.000000000', '2011-05-09T00:00:00.000000000', '2011-06-08T00:00:00.000000000', '2011-07-08T00:00:00.000000000', '2011-08-07T00:00:00.000000000', '2011-09-06T00:00:00.000000000', '2011-10-06T00:00:00.000000000', '2011-11-05T00:00:00.000000000', '2011-12-05T00:00:00.000000000', '2012-01-04T00:00:00.000000000', '2012-02-03T00:00:00.000000000', '2012-03-04T00:00:00.000000000', '2012-04-03T00:00:00.000000000', '2012-05-03T00:00:00.000000000', '2012-06-02T00:00:00.000000000', '2012-07-02T00:00:00.000000000', '2012-08-01T00:00:00.000000000', '2012-08-31T00:00:00.000000000', '2012-09-30T00:00:00.000000000', '2012-10-30T00:00:00.000000000', '2012-11-29T00:00:00.000000000', '2012-12-29T00:00:00.000000000', '2013-01-28T00:00:00.000000000', '2013-02-27T00:00:00.000000000', '2013-03-29T00:00:00.000000000', '2013-04-28T00:00:00.000000000', '2013-05-28T00:00:00.000000000', '2013-06-27T00:00:00.000000000', '2013-07-27T00:00:00.000000000', '2013-08-26T00:00:00.000000000', '2013-09-25T00:00:00.000000000', '2013-10-25T00:00:00.000000000', '2013-11-24T00:00:00.000000000', '2013-12-24T00:00:00.000000000', '2014-01-23T00:00:00.000000000', '2014-02-22T00:00:00.000000000', '2014-03-24T00:00:00.000000000', '2014-04-23T00:00:00.000000000', '2014-05-23T00:00:00.000000000', '2014-06-22T00:00:00.000000000', '2014-07-22T00:00:00.000000000', '2014-08-21T00:00:00.000000000', '2014-09-20T00:00:00.000000000', '2014-10-20T00:00:00.000000000', '2014-11-19T00:00:00.000000000', '2014-12-19T00:00:00.000000000', '2015-01-18T00:00:00.000000000', '2015-02-17T00:00:00.000000000', '2015-03-19T00:00:00.000000000', '2015-04-18T00:00:00.000000000', '2015-05-18T00:00:00.000000000', '2015-06-17T00:00:00.000000000', '2015-07-17T00:00:00.000000000', '2015-08-16T00:00:00.000000000', '2015-09-15T00:00:00.000000000', '2015-10-15T00:00:00.000000000', '2015-11-14T00:00:00.000000000', '2015-12-14T00:00:00.000000000', '2016-01-13T00:00:00.000000000', '2016-02-12T00:00:00.000000000', '2016-03-13T00:00:00.000000000', '2016-04-12T00:00:00.000000000', '2016-05-12T00:00:00.000000000', '2016-06-11T00:00:00.000000000', '2016-07-11T00:00:00.000000000', '2016-08-10T00:00:00.000000000', '2016-09-09T00:00:00.000000000', '2016-10-09T00:00:00.000000000', '2016-11-08T00:00:00.000000000', '2016-12-08T00:00:00.000000000', '2017-01-07T00:00:00.000000000', '2017-02-06T00:00:00.000000000', '2017-03-08T00:00:00.000000000', '2017-04-07T00:00:00.000000000', '2017-05-07T00:00:00.000000000', '2017-06-06T00:00:00.000000000', '2017-07-06T00:00:00.000000000', '2017-08-05T00:00:00.000000000', '2017-09-04T00:00:00.000000000', '2017-10-04T00:00:00.000000000', '2017-11-03T00:00:00.000000000', '2017-12-03T00:00:00.000000000', '2018-01-02T00:00:00.000000000', '2018-02-01T00:00:00.000000000', '2018-03-03T00:00:00.000000000', '2018-04-02T00:00:00.000000000', '2018-05-02T00:00:00.000000000', '2018-06-01T00:00:00.000000000', '2018-07-01T00:00:00.000000000', '2018-07-31T00:00:00.000000000', '2018-08-30T00:00:00.000000000', '2018-09-29T00:00:00.000000000'], dtype='datetime64[ns]')
- Tmean(pres, lat, lon)float32dask.array<chunksize=(58, 20, 60), meta=np.ndarray>
- units :
- degree celcius (ITS-90)
- long_name :
- ARGO TEMPERATURE MEAN Jan 2004 - Dec 2018 (15.0 year) RG CLIMATOLOGY
Array Chunk Bytes 12.11 MB 278.40 kB Shape (58, 145, 360) (58, 20, 60) Count 49 Tasks 48 Chunks Type float32 numpy.ndarray - Tanom(time, pres, lat, lon)float32dask.array<chunksize=(180, 58, 20, 60), meta=np.ndarray>
- units :
- degree celcius (ITS-90)
- long_name :
- ARGO TEMPERATURE ANOMALY defined by Jan 2004 - Dec 2018 (15.0 year) RG CLIMATOLOGY
Array Chunk Bytes 2.18 GB 50.11 MB Shape (180, 58, 145, 360) (180, 58, 20, 60) Count 49 Tasks 48 Chunks Type float32 numpy.ndarray - BATHYMETRY_MASK(pres, lat, lon)float32dask.array<chunksize=(58, 20, 60), meta=np.ndarray>
- long_name :
- BATHYMETRY MASK
Array Chunk Bytes 12.11 MB 278.40 kB Shape (58, 145, 360) (58, 20, 60) Count 49 Tasks 48 Chunks Type float32 numpy.ndarray - MAPPING_MASK(pres, lat, lon)float32dask.array<chunksize=(58, 20, 60), meta=np.ndarray>
- long_name :
- MAPPING MASK: pressure limits of mapping can be shallower than 2000dbar in marginal seas
Array Chunk Bytes 12.11 MB 278.40 kB Shape (58, 145, 360) (58, 20, 60) Count 49 Tasks 48 Chunks Type float32 numpy.ndarray - T(time, pres, lat, lon)float32dask.array<chunksize=(180, 58, 20, 60), meta=np.ndarray>
- standard_name :
- sea_water_potential_temperature
Array Chunk Bytes 2.18 GB 50.11 MB Shape (180, 58, 145, 360) (180, 58, 20, 60) Count 194 Tasks 48 Chunks Type float32 numpy.ndarray - Smean(pres, lat, lon)float32dask.array<chunksize=(58, 20, 60), meta=np.ndarray>
- units :
- Practical Salinity Scale 78
- long_name :
- ARGO SALINITY MEAN Jan 2004 - Dec 2018 (15.0 year) RG CLIMATOLOGY
Array Chunk Bytes 12.11 MB 278.40 kB Shape (58, 145, 360) (58, 20, 60) Count 49 Tasks 48 Chunks Type float32 numpy.ndarray - Sanom(time, pres, lat, lon)float32dask.array<chunksize=(180, 58, 20, 60), meta=np.ndarray>
- units :
- Practical Salinity Scale 78
- long_name :
- ARGO SALINITY ANOMALY defined by Jan 2004 - Dec 2018 (15.0 year) RG CLIMATOLOGY
Array Chunk Bytes 2.18 GB 50.11 MB Shape (180, 58, 145, 360) (180, 58, 20, 60) Count 49 Tasks 48 Chunks Type float32 numpy.ndarray - S(time, pres, lat, lon)float32dask.array<chunksize=(180, 58, 20, 60), meta=np.ndarray>
- standard_name :
- sea_water_salinity
Array Chunk Bytes 2.18 GB 50.11 MB Shape (180, 58, 145, 360) (180, 58, 20, 60) Count 194 Tasks 48 Chunks Type float32 numpy.ndarray
argo0 = (
argo.cf.interp(latitude=0, longitude=360 + np.array([-195, -170, -140, -110]))
.assign_coords(lon=np.array([-195, -170, -140, -110]))
.load()
)
argo0["dens"] = dcpy.eos.pden(argo0.S, argo0.T, 0)
N2 = 9.81 / 1025 * argo0.dens.cf.differentiate("Z")
argo0
<xarray.Dataset> Dimensions: (lon: 4, pres: 58, time: 180) Coordinates: * pres (pres) float32 2.5 10.0 20.0 ... 1.9e+03 1.975e+03 * time (time) datetime64[ns] 2004-01-16 ... 2018-09-29 * lon (lon) int64 -195 -170 -140 -110 lat int64 0 reference_pressure int64 0 Data variables: Tmean (pres, lon) float64 29.55 28.08 26.04 ... 2.305 2.318 Tanom (time, pres, lon) float64 0.5328 0.2495 ... -0.03075 BATHYMETRY_MASK (pres, lon) float64 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 MAPPING_MASK (pres, lon) float64 2e+03 2e+03 2e+03 ... 2e+03 2e+03 T (time, pres, lon) float64 30.09 28.33 ... 2.34 2.287 Smean (pres, lon) float64 34.77 35.2 35.11 ... 34.64 34.64 Sanom (time, pres, lon) float64 -0.3855 -0.1468 ... 0.00375 S (time, pres, lon) float64 34.38 35.05 ... 34.64 34.64 dens (time, pres, lon) float64 1.021e+03 ... 1.028e+03
- lon: 4
- pres: 58
- time: 180
- pres(pres)float322.5 10.0 20.0 ... 1.9e+03 1.975e+03
- units :
- dbar
- positive :
- down
- point_spacing :
- uneven
- axis :
- Z
array([ 2.5, 10. , 20. , 30. , 40. , 50. , 60. , 70. , 80. , 90. , 100. , 110. , 120. , 130. , 140. , 150. , 160. , 170. , 182.5, 200. , 220. , 240. , 260. , 280. , 300. , 320. , 340. , 360. , 380. , 400. , 420. , 440. , 462.5, 500. , 550. , 600. , 650. , 700. , 750. , 800. , 850. , 900. , 950. , 1000. , 1050. , 1100. , 1150. , 1200. , 1250. , 1300. , 1350. , 1412.5, 1500. , 1600. , 1700. , 1800. , 1900. , 1975. ], dtype=float32)
- time(time)datetime64[ns]2004-01-16 ... 2018-09-29
- axis :
- T
array(['2004-01-16T00:00:00.000000000', '2004-02-15T00:00:00.000000000', '2004-03-16T00:00:00.000000000', '2004-04-15T00:00:00.000000000', '2004-05-15T00:00:00.000000000', '2004-06-14T00:00:00.000000000', '2004-07-14T00:00:00.000000000', '2004-08-13T00:00:00.000000000', '2004-09-12T00:00:00.000000000', '2004-10-12T00:00:00.000000000', '2004-11-11T00:00:00.000000000', '2004-12-11T00:00:00.000000000', '2005-01-10T00:00:00.000000000', '2005-02-09T00:00:00.000000000', '2005-03-11T00:00:00.000000000', '2005-04-10T00:00:00.000000000', '2005-05-10T00:00:00.000000000', '2005-06-09T00:00:00.000000000', '2005-07-09T00:00:00.000000000', '2005-08-08T00:00:00.000000000', '2005-09-07T00:00:00.000000000', '2005-10-07T00:00:00.000000000', '2005-11-06T00:00:00.000000000', '2005-12-06T00:00:00.000000000', '2006-01-05T00:00:00.000000000', '2006-02-04T00:00:00.000000000', '2006-03-06T00:00:00.000000000', '2006-04-05T00:00:00.000000000', '2006-05-05T00:00:00.000000000', '2006-06-04T00:00:00.000000000', '2006-07-04T00:00:00.000000000', '2006-08-03T00:00:00.000000000', '2006-09-02T00:00:00.000000000', '2006-10-02T00:00:00.000000000', '2006-11-01T00:00:00.000000000', '2006-12-01T00:00:00.000000000', '2006-12-31T00:00:00.000000000', '2007-01-30T00:00:00.000000000', '2007-03-01T00:00:00.000000000', '2007-03-31T00:00:00.000000000', '2007-04-30T00:00:00.000000000', '2007-05-30T00:00:00.000000000', '2007-06-29T00:00:00.000000000', '2007-07-29T00:00:00.000000000', '2007-08-28T00:00:00.000000000', '2007-09-27T00:00:00.000000000', '2007-10-27T00:00:00.000000000', '2007-11-26T00:00:00.000000000', '2007-12-26T00:00:00.000000000', '2008-01-25T00:00:00.000000000', '2008-02-24T00:00:00.000000000', '2008-03-25T00:00:00.000000000', '2008-04-24T00:00:00.000000000', '2008-05-24T00:00:00.000000000', '2008-06-23T00:00:00.000000000', '2008-07-23T00:00:00.000000000', '2008-08-22T00:00:00.000000000', '2008-09-21T00:00:00.000000000', '2008-10-21T00:00:00.000000000', '2008-11-20T00:00:00.000000000', '2008-12-20T00:00:00.000000000', '2009-01-19T00:00:00.000000000', '2009-02-18T00:00:00.000000000', '2009-03-20T00:00:00.000000000', '2009-04-19T00:00:00.000000000', '2009-05-19T00:00:00.000000000', '2009-06-18T00:00:00.000000000', '2009-07-18T00:00:00.000000000', '2009-08-17T00:00:00.000000000', '2009-09-16T00:00:00.000000000', '2009-10-16T00:00:00.000000000', '2009-11-15T00:00:00.000000000', '2009-12-15T00:00:00.000000000', '2010-01-14T00:00:00.000000000', '2010-02-13T00:00:00.000000000', '2010-03-15T00:00:00.000000000', '2010-04-14T00:00:00.000000000', '2010-05-14T00:00:00.000000000', '2010-06-13T00:00:00.000000000', '2010-07-13T00:00:00.000000000', '2010-08-12T00:00:00.000000000', '2010-09-11T00:00:00.000000000', '2010-10-11T00:00:00.000000000', '2010-11-10T00:00:00.000000000', '2010-12-10T00:00:00.000000000', '2011-01-09T00:00:00.000000000', '2011-02-08T00:00:00.000000000', '2011-03-10T00:00:00.000000000', '2011-04-09T00:00:00.000000000', '2011-05-09T00:00:00.000000000', '2011-06-08T00:00:00.000000000', '2011-07-08T00:00:00.000000000', '2011-08-07T00:00:00.000000000', '2011-09-06T00:00:00.000000000', '2011-10-06T00:00:00.000000000', '2011-11-05T00:00:00.000000000', '2011-12-05T00:00:00.000000000', '2012-01-04T00:00:00.000000000', '2012-02-03T00:00:00.000000000', '2012-03-04T00:00:00.000000000', '2012-04-03T00:00:00.000000000', '2012-05-03T00:00:00.000000000', '2012-06-02T00:00:00.000000000', '2012-07-02T00:00:00.000000000', '2012-08-01T00:00:00.000000000', '2012-08-31T00:00:00.000000000', '2012-09-30T00:00:00.000000000', '2012-10-30T00:00:00.000000000', '2012-11-29T00:00:00.000000000', '2012-12-29T00:00:00.000000000', '2013-01-28T00:00:00.000000000', '2013-02-27T00:00:00.000000000', '2013-03-29T00:00:00.000000000', '2013-04-28T00:00:00.000000000', '2013-05-28T00:00:00.000000000', '2013-06-27T00:00:00.000000000', '2013-07-27T00:00:00.000000000', '2013-08-26T00:00:00.000000000', '2013-09-25T00:00:00.000000000', '2013-10-25T00:00:00.000000000', '2013-11-24T00:00:00.000000000', '2013-12-24T00:00:00.000000000', '2014-01-23T00:00:00.000000000', '2014-02-22T00:00:00.000000000', '2014-03-24T00:00:00.000000000', '2014-04-23T00:00:00.000000000', '2014-05-23T00:00:00.000000000', '2014-06-22T00:00:00.000000000', '2014-07-22T00:00:00.000000000', '2014-08-21T00:00:00.000000000', '2014-09-20T00:00:00.000000000', '2014-10-20T00:00:00.000000000', '2014-11-19T00:00:00.000000000', '2014-12-19T00:00:00.000000000', '2015-01-18T00:00:00.000000000', '2015-02-17T00:00:00.000000000', '2015-03-19T00:00:00.000000000', '2015-04-18T00:00:00.000000000', '2015-05-18T00:00:00.000000000', '2015-06-17T00:00:00.000000000', '2015-07-17T00:00:00.000000000', '2015-08-16T00:00:00.000000000', '2015-09-15T00:00:00.000000000', '2015-10-15T00:00:00.000000000', '2015-11-14T00:00:00.000000000', '2015-12-14T00:00:00.000000000', '2016-01-13T00:00:00.000000000', '2016-02-12T00:00:00.000000000', '2016-03-13T00:00:00.000000000', '2016-04-12T00:00:00.000000000', '2016-05-12T00:00:00.000000000', '2016-06-11T00:00:00.000000000', '2016-07-11T00:00:00.000000000', '2016-08-10T00:00:00.000000000', '2016-09-09T00:00:00.000000000', '2016-10-09T00:00:00.000000000', '2016-11-08T00:00:00.000000000', '2016-12-08T00:00:00.000000000', '2017-01-07T00:00:00.000000000', '2017-02-06T00:00:00.000000000', '2017-03-08T00:00:00.000000000', '2017-04-07T00:00:00.000000000', '2017-05-07T00:00:00.000000000', '2017-06-06T00:00:00.000000000', '2017-07-06T00:00:00.000000000', '2017-08-05T00:00:00.000000000', '2017-09-04T00:00:00.000000000', '2017-10-04T00:00:00.000000000', '2017-11-03T00:00:00.000000000', '2017-12-03T00:00:00.000000000', '2018-01-02T00:00:00.000000000', '2018-02-01T00:00:00.000000000', '2018-03-03T00:00:00.000000000', '2018-04-02T00:00:00.000000000', '2018-05-02T00:00:00.000000000', '2018-06-01T00:00:00.000000000', '2018-07-01T00:00:00.000000000', '2018-07-31T00:00:00.000000000', '2018-08-30T00:00:00.000000000', '2018-09-29T00:00:00.000000000'], dtype='datetime64[ns]')
- lon(lon)int64-195 -170 -140 -110
array([-195, -170, -140, -110])
- lat()int640
array(0)
- reference_pressure()int640
- units :
- dbar
array(0)
- Tmean(pres, lon)float6429.55 28.08 26.04 ... 2.305 2.318
- units :
- degree celcius (ITS-90)
- long_name :
- ARGO TEMPERATURE MEAN Jan 2004 - Dec 2018 (15.0 year) RG CLIMATOLOGY
array([[29.55249977, 28.07800007, 26.04425001, 24.18874979], [29.51224995, 28.05424929, 26.00274992, 23.97324991], [29.4835 , 28.01625013, 25.90525007, 23.34625006], [29.45950031, 27.97675037, 25.76799965, 22.41925001], [29.42675018, 27.92349958, 25.57299995, 21.31699991], [29.37100029, 27.85599995, 25.27450037, 20.12199974], [29.29124975, 27.77050018, 24.84075022, 18.9380002 ], [29.15425014, 27.64800024, 24.22324991, 17.81075001], [28.92324972, 27.4465003 , 23.46099997, 16.78099966], [28.53450012, 27.13049984, 22.5317502 , 15.93599987], [27.97325039, 26.71000004, 21.44550037, 15.27349997], [27.19399977, 26.11800003, 20.23250008, 14.74099994], [26.1927495 , 25.31550026, 18.93574953, 14.31599998], [25.10699987, 24.23324966, 17.6864996 , 13.97049999], [24.03624964, 22.82349968, 16.59350061, 13.69400001], [22.88250017, 21.28649998, 15.67024946, 13.4749999 ], [21.6954999 , 19.76525021, 14.89074969, 13.30675006], [20.5539999 , 18.41349983, 14.27474999, 13.1730001 ], [19.1032505 , 16.87549973, 13.68050003, 13.03174996], [17.16550016, 15.20324993, 13.10550022, 12.87374997], ... [ 5.85500002, 5.90225005, 5.90575004, 5.9145 ], [ 5.55250001, 5.58475006, 5.59924996, 5.59449995], [ 5.278 , 5.3075 , 5.32574987, 5.30974996], [ 5.0309999 , 5.05875015, 5.0575 , 5.06225002], [ 4.79900002, 4.8237499 , 4.81875002, 4.83175004], [ 4.58700001, 4.61025 , 4.60874987, 4.61825001], [ 4.39425004, 4.4145 , 4.41500008, 4.42699993], [ 4.21275008, 4.22250009, 4.23049998, 4.24524987], [ 4.03824997, 4.04324985, 4.05400002, 4.07075 ], [ 3.87099999, 3.87825 , 3.88475001, 3.90999997], [ 3.71349996, 3.72500002, 3.73199999, 3.75874996], [ 3.56449997, 3.57774997, 3.588 , 3.60900003], [ 3.42575002, 3.43199998, 3.44475001, 3.46525002], [ 3.26075 , 3.26274997, 3.27225 , 3.29650003], [ 3.05300003, 3.05699998, 3.06700003, 3.08624995], [ 2.84175003, 2.85325003, 2.86750001, 2.87524998], [ 2.66675001, 2.6785 , 2.68800002, 2.69624996], [ 2.50800002, 2.52575004, 2.53250003, 2.54474998], [ 2.36650002, 2.39325005, 2.39574999, 2.40874994], [ 2.27900004, 2.30575001, 2.30524999, 2.31824994]])
- Tanom(time, pres, lon)float640.5328 0.2495 ... 0.03425 -0.03075
- units :
- degree celcius (ITS-90)
- long_name :
- ARGO TEMPERATURE ANOMALY defined by Jan 2004 - Dec 2018 (15.0 year) RG CLIMATOLOGY
array([[[ 5.32750003e-01, 2.49499999e-01, 1.43999994e-01, 3.48749995e-01], [ 5.50000004e-01, 2.64249999e-01, 1.44499995e-01, 3.92499991e-01], [ 5.86500004e-01, 2.80500006e-01, 1.65249996e-01, 5.91999985e-01], ..., [-1.17499998e-02, 8.75000004e-03, 3.50000017e-03, 3.12500000e-02], [ 3.74999997e-03, 1.72500005e-02, 1.82499995e-02, 2.62500001e-02], [ 3.50000005e-03, 9.74999997e-03, 2.37500002e-02, 1.77500001e-02]], [[ 3.56750000e-01, 1.62500031e-02, -3.44999999e-01, 6.99500009e-01], [ 3.98500003e-01, 1.49999950e-02, -3.38500001e-01, 4.68000002e-01], [ 4.81749989e-01, 1.42499991e-02, -3.03000003e-01, 1.43750001e-01], ... [ 4.20000008e-02, 3.57499998e-02, 1.22500004e-02, -1.82500003e-02], [ 2.84999995e-02, 3.87500003e-02, 1.34999998e-02, -4.42499998e-02], [ 9.24999965e-03, 3.52499997e-02, 1.54999995e-02, -3.52500007e-02]], [[ 9.98000026e-01, 1.23300001e+00, 3.34999993e-01, 7.84250006e-01], [ 9.73250002e-01, 1.24774998e+00, 3.42999995e-01, 9.71500009e-01], [ 9.88749996e-01, 1.25150001e+00, 3.93999994e-01, 1.41724998e+00], ..., [ 4.02499996e-02, 1.44999999e-02, 5.72500005e-02, 1.52500002e-02], [ 3.92500001e-02, 4.60000006e-02, 4.99999998e-02, -4.60000010e-02], [ 6.75000018e-03, 4.97500002e-02, 3.42500005e-02, -3.07499999e-02]]])
- BATHYMETRY_MASK(pres, lon)float641.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0
- long_name :
- BATHYMETRY MASK
array([[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], ... [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]])
- MAPPING_MASK(pres, lon)float642e+03 2e+03 2e+03 ... 2e+03 2e+03
- long_name :
- MAPPING MASK: pressure limits of mapping can be shallower than 2000dbar in marginal seas
array([[2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], ... [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.], [2000., 2000., 2000., 2000.]])
- T(time, pres, lon)float6430.09 28.33 26.19 ... 2.34 2.287
- standard_name :
- sea_water_potential_temperature
array([[[30.08524942, 28.32749987, 26.18825006, 24.53749943], [30.06225014, 28.31849909, 26.14725018, 24.36574984], [30.07000017, 28.29675007, 26.07050037, 23.93824959], ..., [ 2.49624997, 2.53450006, 2.53600001, 2.57599998], [ 2.37025005, 2.41049999, 2.41399997, 2.43499994], [ 2.28250003, 2.31550002, 2.32900006, 2.33599991]], [[29.90924978, 28.09424973, 25.69925022, 24.8882494 ], [29.91074991, 28.06924915, 25.6642499 , 24.44125032], [29.96525002, 28.03049994, 25.6022501 , 23.49000025], ..., [ 2.49625003, 2.49625003, 2.56050003, 2.5535 ], [ 2.36975002, 2.3775 , 2.43274999, 2.40749991], [ 2.27450001, 2.28674996, 2.33824998, 2.3072499 ]], [[29.36074972, 27.7727499 , 26.27300024, 26.44224977], [29.35200024, 27.71174908, 26.24599981, 25.88774967], [29.33775043, 27.63575029, 26.17175007, 24.5364995 ], ..., ... ..., [ 2.58899993, 2.52650005, 2.49750006, 2.53324997], [ 2.45675004, 2.40375006, 2.37624997, 2.39549994], [ 2.33775002, 2.31500006, 2.29825002, 2.30599993]], [[30.53974915, 28.70725012, 26.59400034, 24.05574989], [30.56374979, 28.66799927, 26.55650043, 24.00974989], [30.57625008, 28.60874987, 26.4692502 , 23.87750006], ..., [ 2.55000001, 2.56150001, 2.54474998, 2.52649999], [ 2.3950001 , 2.43200004, 2.40924996, 2.36449993], [ 2.28825009, 2.34100002, 2.32075 , 2.28299999]], [[30.55049944, 29.31099987, 26.37925005, 24.97299957], [30.48549986, 29.30199909, 26.34575033, 24.94474983], [30.47224998, 29.26775026, 26.2992506 , 24.76350021], ..., [ 2.54824996, 2.54025006, 2.58975005, 2.55999994], [ 2.40575004, 2.43924999, 2.44574994, 2.36274993], [ 2.28575003, 2.35549998, 2.33950001, 2.28749996]]])
- Smean(pres, lon)float6434.77 35.2 35.11 ... 34.64 34.64
- units :
- Practical Salinity Scale 78
- long_name :
- ARGO SALINITY MEAN Jan 2004 - Dec 2018 (15.0 year) RG CLIMATOLOGY
array([[34.76774883, 35.1960001 , 35.10874939, 34.72625065], [34.77449894, 35.19824982, 35.10925007, 34.73875046], [34.79024982, 35.20300007, 35.11200047, 34.79125023], [34.82249928, 35.21174908, 35.11849976, 34.86975098], [34.87150002, 35.22399998, 35.12999916, 34.93900013], [34.93025112, 35.2414999 , 35.14600086, 34.99824905], [35.00050068, 35.26375103, 35.16524982, 35.03924942], [35.07649994, 35.28950024, 35.18249989, 35.05225086], [35.15299988, 35.31324959, 35.19999981, 35.04349995], [35.22624969, 35.33774948, 35.21450043, 35.02850056], [35.28849888, 35.36199951, 35.21275043, 35.01075077], [35.3352499 , 35.38424969, 35.19624996, 34.99349976], [35.35750008, 35.39350033, 35.17074966, 34.97699928], [35.35850048, 35.38674927, 35.13024998, 34.96175098], [35.35750008, 35.36450005, 35.08750057, 34.94974899], [35.35074997, 35.33175087, 35.05150032, 34.94024944], [35.34425068, 35.27550125, 35.0112505 , 34.93250084], [35.32525063, 35.22225094, 34.9782505 , 34.92549896], [35.27824974, 35.14975071, 34.94675064, 34.91800022], [35.1827507 , 35.05050087, 34.91624928, 34.90949917], ... [34.53900146, 34.54524899, 34.54974937, 34.55224991], [34.53699875, 34.54199982, 34.54650116, 34.54850006], [34.5379982 , 34.54224968, 34.54575062, 34.54800034], [34.54050064, 34.54424858, 34.54750061, 34.54974937], [34.54449844, 34.54750061, 34.55049896, 34.55200005], [34.54874992, 34.55124855, 34.55350113, 34.55500031], [34.55425072, 34.55525017, 34.55749893, 34.55849838], [34.55924892, 34.56000137, 34.5625 , 34.5625 ], [34.5644989 , 34.56524944, 34.56750107, 34.56750107], [34.56949997, 34.57074928, 34.57224941, 34.57275009], [34.57450104, 34.57575035, 34.57749939, 34.57849884], [34.5795002 , 34.58125114, 34.58250046, 34.58349991], [34.58474922, 34.58624935, 34.58750153, 34.58850098], [34.59074974, 34.59249878, 34.5945015 , 34.5945015 ], [34.5984993 , 34.60050011, 34.60250092, 34.60250092], [34.60750008, 34.60900116, 34.61100006, 34.61149979], [34.61500168, 34.61725044, 34.61949921, 34.62024879], [34.6230011 , 34.625 , 34.62749863, 34.62774849], [34.63000107, 34.63199997, 34.63499832, 34.63499832], [34.63424873, 34.63700104, 34.63999939, 34.63999939]])
- Sanom(time, pres, lon)float64-0.3855 -0.1468 ... 0.00025 0.00375
- units :
- Practical Salinity Scale 78
- long_name :
- ARGO SALINITY ANOMALY defined by Jan 2004 - Dec 2018 (15.0 year) RG CLIMATOLOGY
array([[[-3.85500006e-01, -1.46750001e-01, -5.59999989e-02, -1.39500001e-01], [-3.87750000e-01, -1.44499999e-01, -5.80000011e-02, -1.40999999e-01], [-3.80499996e-01, -1.32999999e-01, -6.50000004e-02, -1.50250003e-01], ..., [-2.00000009e-03, -2.00000009e-03, -2.00000009e-03, -2.25000008e-03], [-3.00000003e-03, -2.50000006e-03, -2.75000004e-03, -3.00000003e-03], [-2.50000006e-03, -2.00000009e-03, -2.75000004e-03, -2.00000009e-03]], [[-4.22249995e-01, -6.80000000e-02, -5.37500000e-02, -1.14249999e-01], [-4.14000005e-01, -6.87499996e-02, -5.40000014e-02, -1.01250000e-01], [-3.68999995e-01, -6.87500024e-02, -5.80000011e-02, -8.55000000e-02], ... [-7.50000036e-04, -1.25000003e-03, 1.25000006e-03, 6.50000013e-03], [ 5.00000024e-04, -2.50000003e-03, 2.00000007e-03, 8.25000019e-03], [ 2.75000013e-03, -3.00000014e-03, 1.50000004e-03, 6.25000009e-03]], [[-5.04249990e-01, -1.16999999e-01, -1.65000004e-02, -5.47500011e-02], [-5.05000003e-01, -1.13750000e-01, -1.45000000e-02, -6.49999985e-02], [-5.22749983e-01, -1.00000001e-01, -2.07500006e-02, -9.40000005e-02], ..., [-7.49999977e-04, -1.50000004e-03, -1.75000005e-03, 2.99999997e-03], [-1.00000002e-03, -3.49999999e-03, -2.50000012e-04, 6.25000009e-03], [ 2.25000008e-03, -4.50000004e-03, 2.50000012e-04, 3.75000015e-03]]])
- S(time, pres, lon)float6434.38 35.05 35.05 ... 34.64 34.64
- standard_name :
- sea_water_salinity
array([[[34.38224888, 35.04924965, 35.05274963, 34.58675098], [34.38674831, 35.05375004, 35.05125046, 34.59774971], [34.40974998, 35.06999969, 35.04700089, 34.64099979], ..., [34.6210022 , 34.6230011 , 34.62549973, 34.62549973], [34.62700272, 34.62950134, 34.63224983, 34.63199997], [34.63175011, 34.63500214, 34.6372509 , 34.63800049]], [[34.34549809, 35.12799931, 35.0549984 , 34.61200047], [34.36049843, 35.12949944, 35.05524921, 34.63749981], [34.42125034, 35.13425064, 35.0539999 , 34.70574951], ..., [34.62075233, 34.62549973, 34.62450027, 34.6269989 ], [34.62800217, 34.63224983, 34.63199997, 34.6344986 ], [34.63299942, 34.63750076, 34.63700104, 34.64024925]], [[34.94549942, 35.21800041, 35.07599926, 34.51799965], [34.96649933, 35.21724987, 35.07649994, 34.58000183], [34.97875023, 35.21950054, 35.08375072, 34.72475052], ..., ... ..., [34.61950111, 34.62450027, 34.6317482 , 34.63249874], [34.6260004 , 34.63050079, 34.63799858, 34.63999844], [34.63549805, 34.63450241, 34.64299965, 34.64249992]], [[34.07449818, 35.28324986, 35.17349911, 34.74174976], [34.11974907, 35.28374958, 35.1742506 , 34.74925041], [34.15700054, 35.29400063, 35.17125034, 34.77025032], ..., [34.62225151, 34.62375069, 34.62874794, 34.63424873], [34.63050079, 34.62949944, 34.63699722, 34.6432476 ], [34.63699913, 34.63400078, 34.64149857, 34.64624977]], [[34.26349926, 35.07899952, 35.09225082, 34.67150116], [34.26949883, 35.08449936, 35.0947504 , 34.67375088], [34.26749992, 35.10299969, 35.09125137, 34.69725037], ..., [34.62225151, 34.62350082, 34.62574959, 34.63074875], [34.62900066, 34.62849998, 34.63474846, 34.6412487 ], [34.6364975 , 34.63250065, 34.64024925, 34.64375019]]])
- dens(time, pres, lon)float641.021e+03 1.022e+03 ... 1.028e+03
- standard_name :
- sea_water_potential_density
- units :
- kg/m3
array([[[1021.2340485 , 1022.32421459, 1023.01429318, 1023.16848611], [1021.24527147, 1022.33056149, 1023.02599961, 1023.22819416], [1021.25986296, 1022.34993627, 1023.04678977, 1023.38784246], ..., [1027.62718446, 1027.62550541, 1027.62737471, 1027.62392622], [1027.64265269, 1027.64126546, 1027.64316901, 1027.64119297], [1027.65376453, 1027.65362858, 1027.65430383, 1027.65431971]], [[1021.26648567, 1022.46004957, 1023.16826011, 1023.08190342], [1021.27721858, 1022.46936836, 1023.17927788, 1023.2356957 ], [1021.3042014 , 1022.48562739, 1023.19749305, 1023.56843902], ..., [1027.6269846 , 1027.63078174, 1027.62446568, 1027.62706731], [1027.64349439, 1027.64624289, 1027.64138354, 1027.64551688], [1027.65542646, 1027.65801569, 1027.65333199, 1027.65851439]], [[1021.90212332, 1022.63273892, 1023.0052507 , 1022.53136938], [1021.92082894, 1022.65201162, 1023.014102 , 1022.75137642], [1021.93482098, 1022.67838122, 1023.04284476, 1023.27314416], ..., ... ..., [1027.61800485, 1027.62739146, 1027.63567264, 1027.63320839], [1027.63454818, 1027.64263449, 1027.65094794, 1027.65092901], [1027.65217089, 1027.65327022, 1027.66146342, 1027.6604197 ]], [[1020.84767855, 1022.37440635, 1022.97757809, 1023.42935367], [1020.87328975, 1022.3878242 , 1022.99000809, 1023.44865258], [1020.89687135, 1022.41519325, 1023.01530727, 1023.50362163], ..., [1027.62357248, 1027.62378 , 1027.62921966, 1027.6351878 ], [1027.64337174, 1027.63944655, 1027.64736833, 1027.65613431], [1027.65748986, 1027.65070122, 1027.65839097, 1027.66532955]], [[1020.9854874 , 1022.01906263, 1022.98410605, 1023.10118629], [1021.01236864, 1022.02621996, 1022.99653133, 1023.11145414], [1021.01543189, 1022.0516283 , 1023.00850926, 1023.18404117], ..., [1027.62372319, 1027.62541071, 1027.62293594, 1027.62950543], [1027.64126559, 1027.63803284, 1027.64248037, 1027.65468145], [1027.65729547, 1027.64828824, 1027.65582713, 1027.66295589]]])
N2T = 9.81 / 1025 * dcpy.eos.pden(35, argo0.T, 0).differentiate("pres")
N2S = 9.81 / 1025 * dcpy.eos.pden(argo0.S, 27, 0).differentiate("pres")
f, ax = plt.subplots(1, 2, sharex=True, sharey=True, constrained_layout=True)
(N2T / N2).mean("time").cf.plot(hue="lon", ylim=(250, 0), ax=ax[0])
(N2S / N2).mean("time").cf.plot(hue="lon", ylim=(250, 0), ax=ax[1])
ax[0].set_xlabel("$N_S^2/N²$")
ax[1].set_xlabel("$N_T^2/N²$")
{'hue': 'lon', 'ylim': (250, 0), 'ax': <AxesSubplot:>, 'x': None, 'y': 'pres', 'yincrease': False}
{'hue': 'lon', 'ylim': (250, 0), 'ax': <AxesSubplot:>, 'x': None, 'y': 'pres', 'yincrease': False}
Text(0.5, 0, '$N_T^2/N²$')

(N2T / N2).mean("time").cf.plot(hue="lon", ylim=(250, 0))
{'hue': 'lon', 'ylim': (250, 0), 'x': None, 'y': 'pres', 'yincrease': False}
[<matplotlib.lines.Line2D at 0x7f12b6a01a00>,
<matplotlib.lines.Line2D at 0x7f12b6a01d60>,
<matplotlib.lines.Line2D at 0x7f12b6a01070>,
<matplotlib.lines.Line2D at 0x7f12b6a01130>]

(N2S / N2).mean("time").cf.plot(hue="lon")
[<matplotlib.lines.Line2D at 0x7f12b4bd11c0>,
<matplotlib.lines.Line2D at 0x7f12b4bd12b0>,
<matplotlib.lines.Line2D at 0x7f12b4bd1370>,
<matplotlib.lines.Line2D at 0x7f12b4bd1430>]

argo0.T.mean("time").cf.plot(hue="lon")
[<matplotlib.lines.Line2D at 0x7f12b667af70>,
<matplotlib.lines.Line2D at 0x7f12b66060a0>,
<matplotlib.lines.Line2D at 0x7f12b6606160>,
<matplotlib.lines.Line2D at 0x7f12b6606220>]

N2.mean("time").cf["pres"]
<xarray.DataArray 'pres' (pres: 58)> array([ 2.5, 10. , 20. , 30. , 40. , 50. , 60. , 70. , 80. , 90. , 100. , 110. , 120. , 130. , 140. , 150. , 160. , 170. , 182.5, 200. , 220. , 240. , 260. , 280. , 300. , 320. , 340. , 360. , 380. , 400. , 420. , 440. , 462.5, 500. , 550. , 600. , 650. , 700. , 750. , 800. , 850. , 900. , 950. , 1000. , 1050. , 1100. , 1150. , 1200. , 1250. , 1300. , 1350. , 1412.5, 1500. , 1600. , 1700. , 1800. , 1900. , 1975. ], dtype=float32) Coordinates: * pres (pres) float32 2.5 10.0 20.0 30.0 ... 1.8e+03 1.9e+03 1.975e+03 Attributes: units: dbar positive: down point_spacing: uneven axis: Z
- pres: 58
- 2.5 10.0 20.0 30.0 40.0 ... 1.6e+03 1.7e+03 1.8e+03 1.9e+03 1.975e+03
array([ 2.5, 10. , 20. , 30. , 40. , 50. , 60. , 70. , 80. , 90. , 100. , 110. , 120. , 130. , 140. , 150. , 160. , 170. , 182.5, 200. , 220. , 240. , 260. , 280. , 300. , 320. , 340. , 360. , 380. , 400. , 420. , 440. , 462.5, 500. , 550. , 600. , 650. , 700. , 750. , 800. , 850. , 900. , 950. , 1000. , 1050. , 1100. , 1150. , 1200. , 1250. , 1300. , 1350. , 1412.5, 1500. , 1600. , 1700. , 1800. , 1900. , 1975. ], dtype=float32)
- pres(pres)float322.5 10.0 20.0 ... 1.9e+03 1.975e+03
- units :
- dbar
- positive :
- down
- point_spacing :
- uneven
- axis :
- Z
array([ 2.5, 10. , 20. , 30. , 40. , 50. , 60. , 70. , 80. , 90. , 100. , 110. , 120. , 130. , 140. , 150. , 160. , 170. , 182.5, 200. , 220. , 240. , 260. , 280. , 300. , 320. , 340. , 360. , 380. , 400. , 420. , 440. , 462.5, 500. , 550. , 600. , 650. , 700. , 750. , 800. , 850. , 900. , 950. , 1000. , 1050. , 1100. , 1150. , 1200. , 1250. , 1300. , 1350. , 1412.5, 1500. , 1600. , 1700. , 1800. , 1900. , 1975. ], dtype=float32)
- units :
- dbar
- positive :
- down
- point_spacing :
- uneven
- axis :
- Z
N2.mean("time").cf.plot(hue="lon", y="Z", yincrease=False)
[<matplotlib.lines.Line2D at 0x7f12dc07d160>,
<matplotlib.lines.Line2D at 0x7f12dc07d250>,
<matplotlib.lines.Line2D at 0x7f12dc07d310>,
<matplotlib.lines.Line2D at 0x7f12dc07d3d0>]

Sampling: how is tao resolving MI at 140W during MAM#
tao = pump.obs.read_tao_zarr("ancillary")
from dask.distributed import Client
client = Client("tcp://127.0.0.1:44303")
client
Client
|
Cluster
|
tao140 = tao.sel(longitude=-140).persist()
Looks like there’s plenty of T data above the EUC max so no issues there? There’s a decade where EUCmax is deeper than 75m or so…
tao140.u.sel(depth=slice(-200, None), time=slice("2011", "2013")).plot(x="time")
tao140.eucmax.plot(lw=0.3)
tao140.eucmax.resample(time="W").mean().plot(color="k", lw=0.6)
[<matplotlib.lines.Line2D at 0x7fe0732db6a0>]

tao140.T.sel(depth=slice(-200, None), time=slice("1996", None)).plot(x="time")
tao140.eucmax.plot(lw=0.3)
tao140.eucmax.resample(time="W").mean().plot(color="k", lw=0.6)
[<matplotlib.lines.Line2D at 0x7fe05d3aa0d0>]

tao140.eucmax.to_netcdf("eucmax-140.nc")
calculate Rig#
sub = tao.Rig.isel(longitude=2).compute().groupby("time.season").median("time")
sub.plot(
hue="season",
y="depth",
)
/gpfs/u/home/dcherian/python/xarray/xarray/core/common.py:664: FutureWarning: This DataArray contains multi-dimensional coordinates. In the future, the dimension order of these coordinates will be restored as well unless you specify restore_coord_dims=False.
self, group, squeeze=squeeze, restore_coord_dims=restore_coord_dims
[<matplotlib.lines.Line2D at 0x2b192110b940>,
<matplotlib.lines.Line2D at 0x2b191fe94da0>,
<matplotlib.lines.Line2D at 0x2b191fe94b38>,
<matplotlib.lines.Line2D at 0x2b191fe94128>]

median_Rig_z = tao.Rig.groupby("time.season").apply(
lambda x: x.chunk({"time": -1}).quantile(q=0.5, dim="time")
)
median_Rig_z.load()
- season: 4
- longitude: 5
- depth: 101
- nan nan nan nan nan nan nan nan ... 0.173 0.06759 nan nan nan nan nan
array([[[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], [[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], [[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], [[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]]])
- quantile()float640.5
array(0.5)
- longitude(longitude)float64-204.0 -195.0 -170.0 -140.0 -110.0
- FORTRAN_format :
- epic_code :
- 502
- type :
- EVEN
- units :
- degree_east
array([-204., -195., -170., -140., -110.])
- depth(depth)float64-500.0 -495.0 -490.0 ... -5.0 0.0
array([-500., -495., -490., -485., -480., -475., -470., -465., -460., -455., -450., -445., -440., -435., -430., -425., -420., -415., -410., -405., -400., -395., -390., -385., -380., -375., -370., -365., -360., -355., -350., -345., -340., -335., -330., -325., -320., -315., -310., -305., -300., -295., -290., -285., -280., -275., -270., -265., -260., -255., -250., -245., -240., -235., -230., -225., -220., -215., -210., -205., -200., -195., -190., -185., -180., -175., -170., -165., -160., -155., -150., -145., -140., -135., -130., -125., -120., -115., -110., -105., -100., -95., -90., -85., -80., -75., -70., -65., -60., -55., -50., -45., -40., -35., -30., -25., -20., -15., -10., -5., 0.])
- season(season)object'DJF' 'JJA' 'MAM' 'SON'
array(['DJF', 'JJA', 'MAM', 'SON'], dtype=object)
- long_name :
- Ri
fg = median_Rig_z.squeeze().plot.line(
col="longitude",
hue="season",
y="depth",
ylim=[-150, 0],
xlim=[0.1, 3.5],
xscale="log",
)
fg.map(lambda: dcpy.plots.linex([0.25]))
plt.gcf().set_size_inches((8, 4))

bin in euc-relative coordinates#
tao = pump.obs.read_tao_zarr("ancillary")
interped = xr.open_zarr("tao-zeuc.zarr")
tao
<xarray.Dataset> Dimensions: (depth: 61, longitude: 5, time: 287335) Coordinates: deepest (time, longitude) float64 dask.array<chunksize=(100000, 1), meta=np.ndarray> * depth (depth) float64 -300.0 -295.0 -290.0 ... -10.0 -5.0 0.0 eucmax (time, longitude) float64 dask.array<chunksize=(287335, 4), meta=np.ndarray> latitude float32 ... * longitude (longitude) float64 -204.0 -195.0 -170.0 -140.0 -110.0 mld (time, longitude) float64 dask.array<chunksize=(100000, 1), meta=np.ndarray> reference_pressure int64 ... shallowest (time, longitude) float64 dask.array<chunksize=(100000, 1), meta=np.ndarray> * time (time) datetime64[ns] 1988-05-15T18:00:00 ... 2021-02-24 zeuc (depth, time, longitude) float64 dask.array<chunksize=(61, 287335, 4), meta=np.ndarray> Data variables: N2 (time, longitude, depth) float64 dask.array<chunksize=(100000, 1, 61), meta=np.ndarray> N2T (time, longitude, depth) float64 dask.array<chunksize=(100000, 1, 61), meta=np.ndarray> Ri (time, longitude, depth) float64 dask.array<chunksize=(100000, 1, 61), meta=np.ndarray> Rig_T (time, longitude, depth) float64 dask.array<chunksize=(100000, 1, 61), meta=np.ndarray> S (time, longitude, depth) float64 dask.array<chunksize=(100000, 1, 61), meta=np.ndarray> S2 (time, depth, longitude) float32 dask.array<chunksize=(100000, 61, 1), meta=np.ndarray> T (time, longitude, depth) float64 dask.array<chunksize=(100000, 1, 61), meta=np.ndarray> dens (time, longitude, depth) float64 dask.array<chunksize=(100000, 1, 61), meta=np.ndarray> densT (time, longitude, depth) float64 dask.array<chunksize=(100000, 1, 61), meta=np.ndarray> u (time, depth, longitude) float32 dask.array<chunksize=(100000, 61, 1), meta=np.ndarray> v (time, depth, longitude) float32 dask.array<chunksize=(100000, 61, 1), meta=np.ndarray>
- depth: 61
- longitude: 5
- time: 287335
- deepest(time, longitude)float64dask.array<chunksize=(100000, 1), meta=np.ndarray>
- description :
- Deepest depth with a valid observation
- units :
- m
Array Chunk Bytes 11.49 MB 800.00 kB Shape (287335, 5) (100000, 1) Count 16 Tasks 15 Chunks Type float64 numpy.ndarray - depth(depth)float64-300.0 -295.0 -290.0 ... -5.0 0.0
- axis :
- Z
- positive :
- up
- units :
- m
array([-300., -295., -290., -285., -280., -275., -270., -265., -260., -255., -250., -245., -240., -235., -230., -225., -220., -215., -210., -205., -200., -195., -190., -185., -180., -175., -170., -165., -160., -155., -150., -145., -140., -135., -130., -125., -120., -115., -110., -105., -100., -95., -90., -85., -80., -75., -70., -65., -60., -55., -50., -45., -40., -35., -30., -25., -20., -15., -10., -5., 0.])
- eucmax(time, longitude)float64dask.array<chunksize=(287335, 4), meta=np.ndarray>
- long_name :
- $z_{EUC}$
- units :
- m
Array Chunk Bytes 11.49 MB 9.19 MB Shape (287335, 5) (287335, 4) Count 3 Tasks 2 Chunks Type float64 numpy.ndarray - latitude()float32...
- FORTRAN_format :
- epic_code :
- 500
- type :
- EVEN
- units :
- degree_north
array(0., dtype=float32)
- longitude(longitude)float64-204.0 -195.0 -170.0 -140.0 -110.0
array([-204., -195., -170., -140., -110.])
- mld(time, longitude)float64dask.array<chunksize=(100000, 1), meta=np.ndarray>
- description :
- Interpolate density to 1m grid. Search for max depth where |drho| > 0.01 and N2 > 1e-5
- long_name :
- $z_{MLD}$
- units :
- m
Array Chunk Bytes 11.49 MB 800.00 kB Shape (287335, 5) (100000, 1) Count 16 Tasks 15 Chunks Type float64 numpy.ndarray - reference_pressure()int64...
- units :
- dbar
array(0)
- shallowest(time, longitude)float64dask.array<chunksize=(100000, 1), meta=np.ndarray>
- axis :
- Z
- description :
- Shallowest depth with a valid observation
- positive :
- up
- units :
- m
Array Chunk Bytes 11.49 MB 800.00 kB Shape (287335, 5) (100000, 1) Count 16 Tasks 15 Chunks Type float64 numpy.ndarray - time(time)datetime64[ns]1988-05-15T18:00:00 ... 2021-02-24
array(['1988-05-15T18:00:00.000000000', '1988-05-15T19:00:00.000000000', '1988-05-15T20:00:00.000000000', ..., '2021-02-23T22:00:00.000000000', '2021-02-23T23:00:00.000000000', '2021-02-24T00:00:00.000000000'], dtype='datetime64[ns]')
- zeuc(depth, time, longitude)float64dask.array<chunksize=(61, 287335, 4), meta=np.ndarray>
Array Chunk Bytes 701.10 MB 560.88 MB Shape (61, 287335, 5) (61, 287335, 4) Count 3 Tasks 2 Chunks Type float64 numpy.ndarray
- N2(time, longitude, depth)float64dask.array<chunksize=(100000, 1, 61), meta=np.ndarray>
- long_name :
- $N²$
Array Chunk Bytes 701.10 MB 48.80 MB Shape (287335, 5, 61) (100000, 1, 61) Count 16 Tasks 15 Chunks Type float64 numpy.ndarray - N2T(time, longitude, depth)float64dask.array<chunksize=(100000, 1, 61), meta=np.ndarray>
- long_name :
- $N_T²$
Array Chunk Bytes 701.10 MB 48.80 MB Shape (287335, 5, 61) (100000, 1, 61) Count 16 Tasks 15 Chunks Type float64 numpy.ndarray - Ri(time, longitude, depth)float64dask.array<chunksize=(100000, 1, 61), meta=np.ndarray>
- long_name :
- $Ri_g$
Array Chunk Bytes 701.10 MB 48.80 MB Shape (287335, 5, 61) (100000, 1, 61) Count 16 Tasks 15 Chunks Type float64 numpy.ndarray - Rig_T(time, longitude, depth)float64dask.array<chunksize=(100000, 1, 61), meta=np.ndarray>
- description :
- Ri_g calculated with N² assuming S=35, masked where N2T < 1e-5
- long_name :
- $Ri_g^T$
Array Chunk Bytes 701.10 MB 48.80 MB Shape (287335, 5, 61) (100000, 1, 61) Count 16 Tasks 15 Chunks Type float64 numpy.ndarray - S(time, longitude, depth)float64dask.array<chunksize=(100000, 1, 61), meta=np.ndarray>
- standard_name :
- sea_water_salinity
Array Chunk Bytes 701.10 MB 48.80 MB Shape (287335, 5, 61) (100000, 1, 61) Count 16 Tasks 15 Chunks Type float64 numpy.ndarray - S2(time, depth, longitude)float32dask.array<chunksize=(100000, 61, 1), meta=np.ndarray>
- long_name :
- $S²$
Array Chunk Bytes 350.55 MB 24.40 MB Shape (287335, 61, 5) (100000, 61, 1) Count 16 Tasks 15 Chunks Type float32 numpy.ndarray - T(time, longitude, depth)float64dask.array<chunksize=(100000, 1, 61), meta=np.ndarray>
- standard_name :
- sea_water_potential_temperature
Array Chunk Bytes 701.10 MB 48.80 MB Shape (287335, 5, 61) (100000, 1, 61) Count 16 Tasks 15 Chunks Type float64 numpy.ndarray - dens(time, longitude, depth)float64dask.array<chunksize=(100000, 1, 61), meta=np.ndarray>
- standard_name :
- sea_water_potential_density
- units :
- kg/m3
Array Chunk Bytes 701.10 MB 48.80 MB Shape (287335, 5, 61) (100000, 1, 61) Count 16 Tasks 15 Chunks Type float64 numpy.ndarray - densT(time, longitude, depth)float64dask.array<chunksize=(100000, 1, 61), meta=np.ndarray>
- description :
- density using T, S
- long_name :
- $ρ_T$
- standard_name :
- sea_water_potential_density
- units :
- kg/m3
Array Chunk Bytes 701.10 MB 48.80 MB Shape (287335, 5, 61) (100000, 1, 61) Count 16 Tasks 15 Chunks Type float64 numpy.ndarray - u(time, depth, longitude)float32dask.array<chunksize=(100000, 61, 1), meta=np.ndarray>
- FORTRAN_format :
- epic_code :
- 1205
- generic_name :
- u
- long_name :
- u
- name :
- u
- standard_name :
- sea_water_x_velocity
- units :
- m/s
Array Chunk Bytes 350.55 MB 24.40 MB Shape (287335, 61, 5) (100000, 61, 1) Count 16 Tasks 15 Chunks Type float32 numpy.ndarray - v(time, depth, longitude)float32dask.array<chunksize=(100000, 61, 1), meta=np.ndarray>
- FORTRAN_format :
- epic_code :
- 1206
- generic_name :
- v
- long_name :
- v
- name :
- v
- standard_name :
- sea_water_y_velocity
- units :
- m/s
Array Chunk Bytes 350.55 MB 24.40 MB Shape (287335, 61, 5) (100000, 61, 1) Count 16 Tasks 15 Chunks Type float32 numpy.ndarray
interped.Rig_T.sel(longitude=-140, time="2008-10").plot(x="time", robust=True)
<matplotlib.collections.QuadMesh at 0x7fe0afbec430>

seasonal["median"].where(seasonal["count"] > 60 * 24).plot.line(
hue="season", y="zeuc", col="longitude", xlim=(0, 2)
)
<xarray.plot.facetgrid.FacetGrid at 0x2ba8ae2a4a90>

subset = good_data.sel(longitude=-140, time="2002")
subset.Rig.plot(x="time", robust=True, vmin=0.1, vmax=2, norm=mpl.colors.LogNorm())
subset.mld.plot(x="time")
[<matplotlib.lines.Line2D at 0x2ba8c4687278>]
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/matplotlib/colors.py:1110: RuntimeWarning: invalid value encountered in less_equal
mask |= resdat <= 0

Gradient Ri quantiles#
grouped = interped.groupby("time.season")
seasonal = grouped.mean().compute()
seasonal.v.plot(y="zeuc", col="longitude", hue="season")
<xarray.plot.facetgrid.FacetGrid at 0x2b3790fd3240>

%matplotlib inline
fg = Ri_q.where(Ri_q.num_obs > 90 * 24).plot.line(
row="quantile",
col="longitude",
hue="season",
y="zeuc",
xlim=[1e-1, 2],
ylim=[0, 250],
xscale="log",
)
fg.map(lambda: dcpy.plots.linex(0.25, ax=plt.gca()))
/gpfs/u/home/dcherian/python/xarray/xarray/plot/plot.py:107: FutureWarning: This DataArray contains multi-dimensional coordinates. In the future, these coordinates will be transposed as well unless you specify transpose_coords=False.
xplt = darray.transpose(ydim, huedim)
<xarray.plot.facetgrid.FacetGrid at 0x2ba8c3798710>

%matplotlib inline
fg = Ri_q.where(Ri_q.num_obs > 90).plot.line(
row="quantile",
col="longitude",
hue="season",
y="zeuc",
xlim=[1e-1, 2],
ylim=[0, 250],
xscale="log",
)
fg.map(lambda: dcpy.plots.linex(0.25, ax=plt.gca()))
# fg.fig.suptitle("25,50,75 percentile gradient Ri from all available hourly TAO data.", y=1.0)
# fg.fig.savefig("images/tao-marginal-stability-hourly-euc-coordinates.png", dpi=200)
/gpfs/u/home/dcherian/python/xarray/xarray/plot/plot.py:107: FutureWarning: This DataArray contains multi-dimensional coordinates. In the future, these coordinates will be transposed as well unless you specify transpose_coords=False.
xplt = darray.transpose(ydim, huedim)
findfont: Font family ['STIXGeneral'] not found. Falling back to DejaVu Sans.
findfont: Font family ['STIXGeneral'] not found. Falling back to DejaVu Sans.
findfont: Font family ['STIXGeneral'] not found. Falling back to DejaVu Sans.
findfont: Font family ['STIXNonUnicode'] not found. Falling back to DejaVu Sans.
findfont: Font family ['STIXNonUnicode'] not found. Falling back to DejaVu Sans.
findfont: Font family ['STIXNonUnicode'] not found. Falling back to DejaVu Sans.
findfont: Font family ['STIXSizeOneSym'] not found. Falling back to DejaVu Sans.
findfont: Font family ['STIXSizeTwoSym'] not found. Falling back to DejaVu Sans.
findfont: Font family ['STIXSizeThreeSym'] not found. Falling back to DejaVu Sans.
findfont: Font family ['STIXSizeFourSym'] not found. Falling back to DejaVu Sans.
findfont: Font family ['STIXSizeFiveSym'] not found. Falling back to DejaVu Sans.
findfont: Font family ['cmsy10'] not found. Falling back to DejaVu Sans.
findfont: Font family ['cmr10'] not found. Falling back to DejaVu Sans.
findfont: Font family ['cmtt10'] not found. Falling back to DejaVu Sans.
findfont: Font family ['cmmi10'] not found. Falling back to DejaVu Sans.
findfont: Font family ['cmb10'] not found. Falling back to DejaVu Sans.
findfont: Font family ['cmss10'] not found. Falling back to DejaVu Sans.
findfont: Font family ['cmex10'] not found. Falling back to DejaVu Sans.
findfont: Font family ['DejaVu Sans Display'] not found. Falling back to DejaVu Sans.
<xarray.plot.facetgrid.FacetGrid at 0x2ac0723c69b0>

Median in euc-relative coordinate#
Ri_q = xr.load_dataarray("tao-hourly-Ri-seasonal-percentiles.nc")
Ri_q
- season: 4
- longitude: 5
- zeuc: 59
- quantile: 3
- 0.8657 1.847 4.079 0.9686 2.076 4.698 ... nan nan nan nan nan nan
array([[[[8.65716985e-01, 1.84699736e+00, 4.07929186e+00], [9.68607747e-01, 2.07586669e+00, 4.69831821e+00], [1.12714689e+00, 2.45510051e+00, 5.63565819e+00], ..., [8.25933339e-01, 1.21812980e+00, 2.22266901e+00], [3.31773526e-02, 2.15271859e-01, 6.91555336e-01], [6.30251313e-01, 9.59637420e-01, 1.28902353e+00]], [[6.99998537e-01, 1.29253461e+00, 2.86526357e+00], [7.26263211e-01, 1.40190939e+00, 3.03401490e+00], [8.14764327e-01, 1.58527315e+00, 3.47211588e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[1.04342082e+00, 1.80473934e+00, 3.48219512e+00], [1.10594958e+00, 1.94826060e+00, 3.84621979e+00], [1.18464712e+00, 2.10952571e+00, 4.29768611e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[5.99332633e-01, 1.01832679e+00, 2.02945611e+00], [6.36358415e-01, 1.09730253e+00, 2.22929311e+00], [6.69077456e-01, 1.17499171e+00, 2.47144998e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[3.93460173e-01, 6.78976245e-01, 1.35634816e+00], [3.96662435e-01, 6.72044675e-01, 1.30979069e+00], [3.89880826e-01, 6.65452753e-01, 1.31105090e+00], ..., [1.71923451e+00, 2.11843237e+00, 3.14030388e+00], [ nan, nan, nan], [ nan, nan, nan]]], [[[9.64841693e-01, 2.03641443e+00, 5.24673701e+00], [1.00937285e+00, 2.07883897e+00, 5.36984820e+00], [1.07954196e+00, 2.17156104e+00, 5.51939592e+00], ..., [9.45015072e-01, 1.23069288e+00, 3.89244182e+00], [3.19059242e-01, 4.46329690e-01, 1.42386922e+00], [ nan, nan, nan]], [[9.77766440e-01, 1.94110422e+00, 4.23775491e+00], [1.02809324e+00, 2.09342055e+00, 4.71047287e+00], [1.20866875e+00, 2.40437219e+00, 5.50768658e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[1.06829041e+00, 1.84754009e+00, 3.53931845e+00], [1.11732667e+00, 1.94676703e+00, 3.81204909e+00], [1.15610819e+00, 2.03169397e+00, 4.13639554e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[6.45954343e-01, 1.04209220e+00, 1.87051596e+00], [6.91774334e-01, 1.11851238e+00, 2.00851346e+00], [7.23639413e-01, 1.19311723e+00, 2.28014936e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[3.90188842e-01, 5.96989693e-01, 1.09097169e+00], [3.99915480e-01, 6.17991764e-01, 1.10944998e+00], [4.09988742e-01, 6.36251961e-01, 1.14362343e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]]], [[[8.05875978e-01, 1.64882518e+00, 3.74725616e+00], [8.49498749e-01, 1.81732453e+00, 4.24185284e+00], [9.22981317e-01, 1.94493706e+00, 4.58776057e+00], ..., [3.77534561e-01, 5.81013898e-01, 1.00414836e+00], [4.43140283e-01, 2.25869804e+00, 6.26462169e+00], [7.27405524e-01, 1.93333063e+00, 1.82996463e+01]], [[8.33461276e-01, 1.78540849e+00, 4.40883574e+00], [8.75326686e-01, 1.94566370e+00, 4.97448619e+00], [1.09038278e+00, 2.41704308e+00, 5.99210430e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[1.03154098e+00, 1.90779205e+00, 4.02230303e+00], [1.06865210e+00, 2.04293217e+00, 4.50922149e+00], [1.09868897e+00, 2.09941647e+00, 4.83581297e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[6.13561831e-01, 9.54200964e-01, 1.59989813e+00], [6.30494824e-01, 9.95023982e-01, 1.67218575e+00], [6.41170129e-01, 1.02841434e+00, 1.77831551e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[3.93044016e-01, 6.17636578e-01, 1.07574078e+00], [3.96811132e-01, 6.24261383e-01, 1.06323474e+00], [3.92496939e-01, 6.23224291e-01, 1.09776787e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]]], [[[7.20142171e-01, 1.55444359e+00, 3.42266777e+00], [7.95652503e-01, 1.63517308e+00, 3.68113071e+00], [8.57140530e-01, 1.82649115e+00, 4.21420888e+00], ..., [2.47228307e-01, 6.21093974e-01, 1.91750068e+00], [3.27682126e-01, 1.10605834e+00, 3.20444965e+00], [3.40164626e-01, 5.65530493e-01, 1.53144780e+00]], [[6.63675669e-01, 1.31916576e+00, 3.00179180e+00], [6.91861346e-01, 1.44553130e+00, 3.44077254e+00], [8.46168409e-01, 1.73035774e+00, 4.14209451e+00], ..., [6.55769401e-02, 3.88032611e-01, 8.03026828e-01], [6.08337896e+01, 6.08337896e+01, 6.08337896e+01], [ nan, nan, nan]], [[1.22505629e+00, 2.16464382e+00, 4.25647302e+00], [1.31365069e+00, 2.36794923e+00, 4.86517140e+00], [1.38017117e+00, 2.53467087e+00, 5.59876342e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[6.04536606e-01, 1.02415097e+00, 1.99978561e+00], [6.29322459e-01, 1.08261699e+00, 2.06070930e+00], [6.45054365e-01, 1.11824484e+00, 2.15339242e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[3.98786048e-01, 6.72431954e-01, 1.26091140e+00], [4.02719219e-01, 6.77482230e-01, 1.26239862e+00], [3.97279637e-01, 6.78105856e-01, 1.31576185e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]]]])
- season(season)object'DJF' 'MAM' 'JJA' 'SON'
array(['DJF', 'MAM', 'JJA', 'SON'], dtype=object)
- quantile(quantile)float640.25 0.5 0.75
array([0.25, 0.5 , 0.75])
- zeuc(zeuc)float64-47.5 -42.5 -37.5 ... 237.5 242.5
- long_name :
- Depth relative to EUC max
- units :
- m
array([-47.5, -42.5, -37.5, -32.5, -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5, 52.5, 57.5, 62.5, 67.5, 72.5, 77.5, 82.5, 87.5, 92.5, 97.5, 102.5, 107.5, 112.5, 117.5, 122.5, 127.5, 132.5, 137.5, 142.5, 147.5, 152.5, 157.5, 162.5, 167.5, 172.5, 177.5, 182.5, 187.5, 192.5, 197.5, 202.5, 207.5, 212.5, 217.5, 222.5, 227.5, 232.5, 237.5, 242.5])
- longitude(longitude)float32-204.0 -195.0 -170.0 -140.0 -110.0
- FORTRAN_format :
- epic_code :
- 502
- type :
- EVEN
- units :
- degree_east
array([-204., -195., -170., -140., -110.], dtype=float32)
- latitude()float320.0
- FORTRAN_format :
- epic_code :
- 500
- type :
- EVEN
- units :
- degree_north
array(0., dtype=float32)
- num_obs(season, longitude, zeuc)int642956 3450 3685 4162 ... 0 0 0 0
array([[[ 2956, 3450, 3685, ..., 11, 4, 2], [13003, 15472, 16505, ..., 0, 0, 0], [25255, 25759, 26188, ..., 0, 0, 0], [32022, 32550, 32964, ..., 0, 0, 0], [22159, 22496, 22742, ..., 7, 0, 0]], [[ 3942, 4331, 4609, ..., 16, 10, 0], [17279, 19213, 19858, ..., 0, 0, 0], [24860, 25030, 25287, ..., 0, 0, 0], [31769, 32155, 32493, ..., 0, 0, 0], [23765, 23781, 23797, ..., 0, 0, 0]], [[ 3745, 3967, 4061, ..., 12, 4, 4], [20430, 22423, 23235, ..., 0, 0, 0], [25438, 25492, 25513, ..., 0, 0, 0], [30761, 31005, 31326, ..., 0, 0, 0], [26311, 26305, 26311, ..., 0, 0, 0]], [[ 1779, 2291, 2663, ..., 302, 179, 102], [17003, 19290, 20532, ..., 9, 1, 0], [23085, 23454, 23690, ..., 0, 0, 0], [35541, 35937, 36215, ..., 0, 0, 0], [22990, 23038, 23080, ..., 0, 0, 0]]])
median_Rig = Ri_q.sel(quantile=0.5, zeuc=slice(0, None))
median_Rig
- season: 4
- longitude: 5
- zeuc: 49
- 12.14 5.204 3.505 3.307 3.33 3.44 2.921 ... nan nan nan nan nan nan
array([[[1.21434122e+01, 5.20354724e+00, 3.50501919e+00, 3.30736311e+00, 3.33031631e+00, 3.43964060e+00, 2.92148757e+00, 2.48129720e+00, 2.11243240e+00, 1.83912229e+00, 1.69382899e+00, 1.61765319e+00, 1.57829252e+00, 1.65197799e+00, 1.67660646e+00, 1.70361004e+00, 1.75811871e+00, 1.77633452e+00, 1.78274006e+00, 1.77130445e+00, 1.76453557e+00, 1.59982041e+00, 1.53944503e+00, 1.46579473e+00, 1.38052897e+00, 1.36555182e+00, 1.22801891e+00, 1.11480848e+00, 9.81393217e-01, 8.09430894e-01, 7.11033315e-01, 6.64250979e-01, 6.77348794e-01, 6.59767973e-01, 6.68314872e-01, 6.45685835e-01, 6.25755328e-01, 6.47728194e-01, 6.16354965e-01, 7.43610355e-01, 7.47971748e-01, 7.51553840e-01, 6.64788050e-01, 6.37038637e-01, 7.09365153e-01, 1.08899569e+00, 1.21812980e+00, 2.15271859e-01, 9.59637420e-01], [1.13882227e+01, 4.77078332e+00, 3.17914688e+00, 2.61438944e+00, 2.32290267e+00, 2.03380830e+00, 1.79832267e+00, 1.61383103e+00, 1.51623494e+00, 1.46151757e+00, 1.53912420e+00, 1.50846894e+00, 1.62729495e+00, 1.62687128e+00, 1.76641538e+00, 1.71702053e+00, 1.82824524e+00, 1.68400249e+00, 1.69879042e+00, 1.47777091e+00, 1.38645753e+00, 1.11946488e+00, 1.01298141e+00, 8.26534889e-01, 6.92515550e-01, 6.09600706e-01, 5.75299815e-01, 5.40169666e-01, 5.15796523e-01, 4.88624275e-01, 4.84976674e-01, 4.53798638e-01, 4.52561612e-01, 4.34450104e-01, 4.29997400e-01, 3.87855213e-01, 3.46594639e-01, 3.25506862e-01, 3.52597288e-01, 3.80018426e-01, 3.84656549e-01, 4.43017123e-01, 4.07717999e-01, 5.74185724e-01, 9.16682658e-01, 4.36350802e-01, nan, nan, nan], [1.47684744e+01, 5.04312084e+00, 2.56775010e+00, 1.85025533e+00, 1.51538755e+00, 1.21760241e+00, 9.54120770e-01, 7.90525610e-01, 6.72324136e-01, 5.98292186e-01, 5.29106407e-01, 4.99256817e-01, 4.65811035e-01, 4.33383038e-01, 4.10126868e-01, 3.87110152e-01, 3.66788709e-01, 3.40755814e-01, 3.19803196e-01, 3.02440042e-01, 2.89701995e-01, 2.82765766e-01, 2.75048658e-01, 2.70829288e-01, 2.70248861e-01, 2.72051211e-01, 2.72058429e-01, 2.67041272e-01, 2.58904990e-01, 2.60149478e-01, 2.65921342e-01, 2.79376712e-01, 2.90498832e-01, 2.87567105e-01, 2.71350610e-01, 2.39308328e-01, 2.84417943e-01, 2.52591608e-01, 2.24577574e-01, 1.48891455e-01, nan, nan, nan, nan, nan, nan, nan, nan, nan], [8.36970312e+00, 2.14714176e+00, 8.60081631e-01, 5.37678636e-01, 4.56452975e-01, 4.08223936e-01, 3.65848689e-01, 3.36680169e-01, 3.07557415e-01, 2.86030920e-01, 2.67174971e-01, 2.53727388e-01, 2.47924187e-01, 2.42138913e-01, 2.37619971e-01, 2.32915351e-01, 2.35271202e-01, 2.33308752e-01, 2.29976608e-01, 2.25829450e-01, 2.19308704e-01, 2.04431004e-01, 2.03778743e-01, 1.90089052e-01, 1.91867722e-01, 2.53620813e-01, 2.88059360e-01, 3.41855224e-01, 3.33964955e-01, 2.12386931e-01, 1.75787371e-01, 1.36908322e-01, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [6.06131842e+00, 1.47315757e+00, 6.69238501e-01, 4.78770333e-01, 4.38250354e-01, 4.14118137e-01, 3.88180626e-01, 3.71394866e-01, 3.42725616e-01, 3.24029195e-01, 3.07485755e-01, 3.10154128e-01, 3.08549184e-01, 3.35307815e-01, 3.69083744e-01, 4.11380242e-01, 5.76389174e-01, 6.93941870e-01, 6.69804430e-01, 7.37061782e-01, 7.07122624e-01, 1.13043653e+00, 1.73115935e+00, 2.02911056e+00, 1.24368276e+00, 1.05902519e+00, 1.11146421e+00, 1.23294705e+00, 2.33638675e+00, 2.93042190e+00, 3.58860533e+00, 5.00408848e+00, 6.55130805e+00, 5.27558959e+00, 8.02832863e+00, 5.61414450e+00, 4.23552049e+00, 3.11610086e+00, 3.76147376e+00, 2.42637315e+00, 3.42179676e+00, 2.30791843e+00, 2.42310845e+00, 3.61083078e+00, 3.51495200e+00, 2.22169454e+00, 2.11843237e+00, nan, nan]], [[1.18795150e+01, 5.73232095e+00, 4.17068039e+00, 3.66942172e+00, 3.71244499e+00, 3.72028871e+00, 3.30464552e+00, 3.17999834e+00, 2.75183906e+00, 2.49180164e+00, 2.22375740e+00, 2.11169120e+00, 1.92279833e+00, 1.94631748e+00, 1.91476112e+00, 1.84819788e+00, 1.80467154e+00, 1.64739303e+00, 1.54788270e+00, 1.33018077e+00, 1.29655312e+00, 1.17936204e+00, 1.10972316e+00, 1.04965287e+00, 9.83979900e-01, 1.01748364e+00, 9.67494278e-01, 9.48095799e-01, 8.66171745e-01, 8.21134166e-01, 7.33456707e-01, 6.10038674e-01, 5.60157638e-01, 4.31943839e-01, 4.10451759e-01, 3.38990636e-01, 3.02373638e-01, 2.85209705e-01, 2.25864290e-01, 2.14437955e-01, 1.87437119e-01, 1.78117461e-01, 1.86693252e-01, 2.06638961e-01, 4.83587654e-01, 5.92063881e-01, 1.23069288e+00, 4.46329690e-01, nan], [1.21266701e+01, 4.79648555e+00, 3.50769751e+00, 2.90230283e+00, 2.65311451e+00, 2.12264266e+00, 1.87921132e+00, 1.59730303e+00, 1.48343092e+00, 1.34714062e+00, 1.33025270e+00, 1.21568299e+00, 1.26878140e+00, 1.23142890e+00, 1.28923710e+00, 1.16348267e+00, 1.19842881e+00, 1.04129351e+00, 1.09257463e+00, 9.60674825e-01, 9.38267437e-01, 7.76860458e-01, 7.30618795e-01, 6.16369855e-01, 5.64380567e-01, 4.93782675e-01, 4.53639315e-01, 3.81601623e-01, 3.70866313e-01, 3.21142329e-01, 3.14585744e-01, 2.84435444e-01, 2.89148003e-01, 2.76887421e-01, 2.84614061e-01, 2.80558164e-01, 2.86626233e-01, 2.88373412e-01, 3.06993896e-01, 3.12691570e-01, 3.57301330e-01, 2.98035276e-01, 2.97355837e-01, 4.22352520e-01, 4.40715975e-01, 3.81879096e-01, nan, nan, nan], [1.32308680e+01, 4.60275099e+00, 2.38688532e+00, 1.77956782e+00, 1.60767100e+00, 1.53063058e+00, 1.40887315e+00, 1.30373969e+00, 1.09884649e+00, 9.16109021e-01, 7.61750976e-01, 6.66489983e-01, 5.87283785e-01, 5.25661282e-01, 4.81864084e-01, 4.41365009e-01, 4.19537926e-01, 3.90161175e-01, 3.63381473e-01, 3.50927044e-01, 3.30290755e-01, 3.20888983e-01, 3.12251187e-01, 3.13585513e-01, 3.27251221e-01, 3.35796922e-01, 3.71503610e-01, 3.73879739e-01, 3.83201630e-01, 3.59528435e-01, 3.30063234e-01, 2.89632833e-01, 2.70732746e-01, 2.91731611e-01, 3.06177473e-01, 4.33485338e-01, 7.40472313e-01, 4.94800430e-01, 1.87327741e+00, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [9.38441536e+00, 2.66479397e+00, 1.15839296e+00, 7.39236742e-01, 5.94381771e-01, 5.03965375e-01, 4.28284019e-01, 3.79675794e-01, 3.37561653e-01, 3.12639645e-01, 2.94816835e-01, 2.75987607e-01, 2.61016578e-01, 2.46401457e-01, 2.42315368e-01, 2.37416130e-01, 2.28437781e-01, 2.22667753e-01, 2.03709351e-01, 1.95004949e-01, 1.72384242e-01, 2.00197873e-01, 1.83429982e-01, 1.71063054e-01, 1.68982952e-01, 1.93423097e-01, 2.50654072e-02, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [6.35667026e+00, 1.58289170e+00, 7.40185625e-01, 5.89306177e-01, 6.00743499e-01, 6.02856712e-01, 6.05625307e-01, 5.60725962e-01, 5.30575976e-01, 5.26772048e-01, 4.33881507e-01, 4.35793151e-01, 4.99908041e-01, 4.51393154e-01, 4.15098246e-01, 2.65339357e-01, 1.14163436e+00, 1.49539644e+00, 1.30468077e+00, 1.44661570e+01, 2.76362223e+00, 2.06068540e+00, 4.82168482e+00, 4.49350238e+00, 4.51277068e+00, 3.64989798e+00, 5.42045806e+00, 2.60856677e+00, 3.04463197e+00, 1.40800983e+00, 1.38749771e+00, 1.54530999e+00, 6.59299158e+00, 1.07311729e+01, 1.05502139e+01, 3.33085248e+01, 3.20924688e+01, 2.13964199e+01, 1.51388879e+01, 4.20119909e+00, 6.52112723e+00, 1.75267170e+01, 1.55344339e+01, 8.78469408e+00, nan, nan, nan, nan, nan]], [[1.05714129e+01, 4.62359230e+00, 3.46139879e+00, 3.35240952e+00, 3.58240908e+00, 3.60377978e+00, 3.51227250e+00, 3.45704319e+00, 3.31288158e+00, 3.50207365e+00, 3.30392792e+00, 3.05101028e+00, 2.90888777e+00, 2.71406160e+00, 2.51353778e+00, 2.45364021e+00, 2.30567717e+00, 2.15569023e+00, 2.19715252e+00, 1.97989130e+00, 1.94674416e+00, 1.84492966e+00, 1.94365311e+00, 1.95732762e+00, 1.94741159e+00, 1.97090166e+00, 1.69769634e+00, 1.72398378e+00, 1.51018620e+00, 1.47244655e+00, 1.41086089e+00, 1.14914169e+00, 1.40162635e+00, 1.24632637e+00, 1.17904731e+00, 1.19666952e+00, 7.49406766e-01, 6.86870323e-01, 5.43489970e-01, 5.20109112e-01, 5.17017122e-01, 4.75424181e-01, 3.94350914e-01, 5.11334188e-01, 6.07132291e-01, 6.30565797e-01, 5.81013898e-01, 2.25869804e+00, 1.93333063e+00], [1.17940640e+01, 5.25544201e+00, 4.22967127e+00, 3.62164805e+00, 3.88617101e+00, 3.37901211e+00, 3.28576976e+00, 2.63130394e+00, 2.42744109e+00, 1.99966443e+00, 1.88839719e+00, 1.59958155e+00, 1.62788966e+00, 1.47858501e+00, 1.53199188e+00, 1.35668051e+00, 1.50458319e+00, 1.32140472e+00, 1.38419409e+00, 1.20549313e+00, 1.23711492e+00, 1.05168104e+00, 1.04349843e+00, 9.17463818e-01, 8.31690289e-01, 6.96096843e-01, 6.24577881e-01, 5.19898097e-01, 5.11161347e-01, 4.45226097e-01, 4.50346637e-01, 3.91552356e-01, 3.88578151e-01, 3.65311011e-01, 3.82296141e-01, 3.98548037e-01, 4.05276644e-01, 4.08935421e-01, 4.25603088e-01, 4.87255405e-01, 5.89694583e-01, 5.36924034e-01, 7.43590748e-01, 4.63893288e-01, 2.94460035e-01, 1.82202586e-01, nan, nan, nan], [1.07297006e+01, 3.82770691e+00, 2.01728290e+00, 1.44375591e+00, 1.19391101e+00, 9.41738554e-01, 7.61547681e-01, 6.86062120e-01, 6.13427458e-01, 5.64384458e-01, 5.04007329e-01, 4.62596793e-01, 4.25500673e-01, 3.97350213e-01, 3.79143925e-01, 3.49461486e-01, 3.25380721e-01, 3.11733912e-01, 3.01066981e-01, 3.00100976e-01, 3.03328532e-01, 3.03769908e-01, 2.91578618e-01, 2.74011282e-01, 2.50571836e-01, 2.43947408e-01, 2.29420991e-01, 2.12201145e-01, 1.94873662e-01, 1.63965650e-01, 1.23270352e-01, 1.10001085e-01, 9.16278115e-02, 7.36690614e-02, 8.54985489e-02, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [8.38778976e+00, 1.95349263e+00, 7.51629323e-01, 4.76176370e-01, 4.08459571e-01, 3.64684456e-01, 3.27602914e-01, 2.98867151e-01, 2.75016466e-01, 2.62129512e-01, 2.54552710e-01, 2.48601040e-01, 2.46271453e-01, 2.36938130e-01, 2.39076504e-01, 2.30147425e-01, 2.34933765e-01, 2.55580714e-01, 2.66980573e-01, 2.83303540e-01, 2.79064475e-01, 2.64805858e-01, 2.48679408e-01, 2.63079630e-01, 2.52527164e-01, 2.90270974e-01, 2.84629061e-01, 2.48436912e-01, 2.43670789e-01, 2.35500689e-01, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [5.37563422e+00, 1.12358895e+00, 4.95643238e-01, 3.65101132e-01, 3.51802985e-01, 3.52177576e-01, 3.52007361e-01, 3.51005701e-01, 3.37515271e-01, 3.39513082e-01, 3.35223730e-01, 3.18289001e-01, 3.06821750e-01, 2.90340441e-01, 2.98470763e-01, 2.79100185e-01, 2.99315859e-01, 3.15053960e-01, 3.55265472e-01, 3.23207753e-01, 2.97037879e-01, 3.19642411e-01, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]], [[1.32084796e+01, 5.39319207e+00, 3.52229632e+00, 2.93341640e+00, 2.72676167e+00, 2.49043560e+00, 2.21115447e+00, 2.14446298e+00, 2.25307901e+00, 2.37758877e+00, 2.36786726e+00, 2.26457119e+00, 2.05241769e+00, 2.02006020e+00, 1.96651541e+00, 1.97930909e+00, 2.05072275e+00, 2.11200633e+00, 2.25526030e+00, 2.15241252e+00, 2.24380199e+00, 2.08202988e+00, 1.99581743e+00, 1.89842029e+00, 1.68641665e+00, 1.55177330e+00, 1.36028593e+00, 1.24278528e+00, 1.12188757e+00, 1.02753915e+00, 9.51756111e-01, 8.79999922e-01, 8.48478459e-01, 7.86434153e-01, 7.75960964e-01, 7.31223467e-01, 6.94611082e-01, 6.61910228e-01, 6.69654245e-01, 6.46087328e-01, 6.16348989e-01, 6.27899772e-01, 5.98733773e-01, 5.66040755e-01, 5.54252448e-01, 5.32374004e-01, 6.21093974e-01, 1.10605834e+00, 5.65530493e-01], [1.18595525e+01, 4.97959322e+00, 3.58755757e+00, 2.94108483e+00, 2.85884400e+00, 2.54028601e+00, 2.54466762e+00, 2.27151768e+00, 2.20081956e+00, 2.03409988e+00, 2.06725784e+00, 1.89290255e+00, 1.98072942e+00, 1.86709794e+00, 1.86255919e+00, 1.60786293e+00, 1.67623955e+00, 1.40131629e+00, 1.44908704e+00, 1.26560946e+00, 1.35469045e+00, 1.16296249e+00, 1.15626968e+00, 1.00359287e+00, 9.27385770e-01, 8.05813051e-01, 7.29405245e-01, 6.14712908e-01, 5.74781919e-01, 5.05714310e-01, 4.88913616e-01, 4.44145253e-01, 4.45800974e-01, 4.19765613e-01, 4.26248772e-01, 4.53539067e-01, 4.69807422e-01, 4.60143069e-01, 4.79973706e-01, 4.44125125e-01, 4.26681701e-01, 5.16226474e-01, 5.06248645e-01, 5.43729686e-01, 4.03384597e-01, 3.22069622e-01, 3.88032611e-01, 6.08337896e+01, nan], [1.20008153e+01, 4.52373447e+00, 2.53205436e+00, 1.95987145e+00, 1.68561559e+00, 1.35823013e+00, 1.06112770e+00, 9.04148180e-01, 7.73121226e-01, 7.06270473e-01, 6.38955325e-01, 5.88677049e-01, 5.23072367e-01, 4.77237345e-01, 4.40651750e-01, 4.03559240e-01, 3.77945334e-01, 3.61810002e-01, 3.48063565e-01, 3.40408987e-01, 3.19275420e-01, 3.15722505e-01, 2.98753510e-01, 2.94470373e-01, 2.87329178e-01, 2.84434984e-01, 2.89159681e-01, 2.96999130e-01, 3.09476536e-01, 3.09896010e-01, 3.43075732e-01, 3.64153279e-01, 3.37287147e-01, 2.83830864e-01, 2.65328327e-01, 3.10828094e-01, 5.27707428e-01, 1.09958888e+00, 1.70428055e+00, 4.72042158e-01, 1.73144303e+00, nan, nan, nan, nan, nan, nan, nan, nan], [8.14140230e+00, 1.88084775e+00, 7.26223443e-01, 4.61641841e-01, 4.01225449e-01, 3.77276792e-01, 3.61756498e-01, 3.51907089e-01, 3.34929641e-01, 3.17450628e-01, 3.01135119e-01, 2.91249790e-01, 2.82846238e-01, 2.72306145e-01, 2.69324223e-01, 2.60152814e-01, 2.52086985e-01, 2.42525708e-01, 2.39314482e-01, 2.27459368e-01, 2.29909146e-01, 2.33270130e-01, 2.32517123e-01, 2.57107429e-01, 2.37520841e-01, 2.17734028e-01, 1.77322463e-01, 1.66670892e-01, 2.06064679e-01, 1.81312113e-01, 3.56486993e-01, 4.76187062e-02, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [5.30451555e+00, 1.39890220e+00, 6.59641136e-01, 4.74013103e-01, 4.34966521e-01, 4.14950727e-01, 3.92516821e-01, 3.73728739e-01, 3.41558522e-01, 3.13010930e-01, 2.81422250e-01, 2.62277502e-01, 2.44637364e-01, 2.39803077e-01, 2.42269302e-01, 2.32348871e-01, 2.32636819e-01, 2.28041078e-01, 2.54482152e-01, 2.75752326e-01, 3.44877263e-01, 3.81703585e-01, 3.86630974e-01, 6.74861080e-01, 8.42115501e-01, 7.61087575e-01, 6.42034748e-01, 5.88438534e-01, 5.59815524e-01, 4.67952854e-01, 3.81562168e-01, 6.05726756e-01, 4.05398653e-01, 4.76605698e-01, 8.32539916e-01, 9.93984286e+00, 4.42157658e-01, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]]])
- season(season)object'DJF' 'MAM' 'JJA' 'SON'
array(['DJF', 'MAM', 'JJA', 'SON'], dtype=object)
- quantile()float640.5
array(0.5)
- zeuc(zeuc)float642.5 7.5 12.5 ... 232.5 237.5 242.5
- long_name :
- Depth relative to EUC max
- units :
- m
array([ 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5, 52.5, 57.5, 62.5, 67.5, 72.5, 77.5, 82.5, 87.5, 92.5, 97.5, 102.5, 107.5, 112.5, 117.5, 122.5, 127.5, 132.5, 137.5, 142.5, 147.5, 152.5, 157.5, 162.5, 167.5, 172.5, 177.5, 182.5, 187.5, 192.5, 197.5, 202.5, 207.5, 212.5, 217.5, 222.5, 227.5, 232.5, 237.5, 242.5])
- longitude(longitude)float32-204.0 -195.0 -170.0 -140.0 -110.0
- FORTRAN_format :
- epic_code :
- 502
- type :
- EVEN
- units :
- degree_east
array([-204., -195., -170., -140., -110.], dtype=float32)
- latitude()float320.0
- FORTRAN_format :
- epic_code :
- 500
- type :
- EVEN
- units :
- degree_north
array(0., dtype=float32)
- num_obs(season, longitude, zeuc)int645189 5238 5231 5230 ... 0 0 0 0
array([[[ 5189, 5238, 5231, 5230, 5231, 5225, 5232, 5235, 5245, 5255, 5256, 5258, 5256, 5256, 5254, 5253, 5245, 5237, 5230, 5198, 5124, 5047, 4937, 4771, 4597, 4395, 4119, 3854, 3539, 3216, 2899, 2553, 2197, 1932, 1635, 1380, 1083, 844, 702, 526, 454, 301, 199, 119, 45, 26, 11, 4, 2], [23197, 23683, 23695, 23706, 23719, 23727, 23734, 23722, 23717, 23667, 23602, 23526, 23432, 23362, 23202, 23034, 22656, 22223, 21555, 20735, 19739, 18716, 17243, 16280, 14753, 13865, 12340, 11586, 10615, 9855, 8655, 7623, 6302, 5236, 4054, 3232, 2440, 1820, 1467, 972, 751, 356, 160, 93, 16, 8, 0, 0, 0], [26534, 26473, 26403, 26382, 26340, 26318, 26274, 26225, 26173, 26086, 25955, 25785, 25533, 25196, 24769, 24191, 23587, 22905, 22068, 21015, 19896, 18569, 17018, 15203, 13468, 11411, 9552, 7627, 5617, 4331, 2854, 1914, 1174, 627, 347, 143, 74, 26, 10, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [34205, 34096, 34055, 33934, 33824, 33723, 33544, 33339, 32945, 32262, 31174, 29605, 27190, 25027, 21073, 18218, 14241, 10909, 8219, 5474, 3805, 2160, 1259, 590, 313, 134, 80, 53, 35, 20, 7, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [23051, 22789, 22550, 21664, 21035, 19304, 17604, 15190, 12834, 10885, 8348, 6440, 4162, 2736, 1475, 835, 422, 220, 148, 98, 85, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 78, 73, 65, 59, 45, 30, 21, 10, 7, 0, 0]], [[ 5739, 5765, 5763, 5765, 5758, 5755, 5758, 5756, 5763, 5766, 5767, 5767, 5758, 5752, 5735, 5708, 5678, 5634, 5559, 5472, 5364, 5248, 5099, 4922, 4714, 4481, 4198, 3929, 3594, 3275, 3001, 2650, 2237, 1935, 1470, 1232, 934, 716, 555, 367, 310, 195, 135, 77, 49, 28, 16, 10, 0], [26097, 26544, 26549, 26557, 26559, 26547, 26564, 26561, 26465, 26429, 26132, 25988, 25700, 25512, 24895, 24687, 23994, 23646, 23061, 22435, 21749, 21034, 20413, 19632, 18773, 17947, 16638, 15595, 13809, 12704, 10636, 9382, 6859, 5818, 4328, 3571, 2329, 1719, 1160, 655, 442, 216, 116, 59, 12, 9, 0, 0, 0], [25567, 25577, 25587, 25601, 25612, 25605, 25592, 25538, 25473, 25368, 25165, 24964, 24562, 24182, 23459, 22776, 21907, 20900, 20063, 18598, 17346, 15494, 13757, 11684, 9549, 7734, 5609, 4306, 2990, 2327, 1591, 1168, 784, 372, 207, 89, 34, 20, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [32480, 32302, 32149, 31903, 31739, 31260, 30523, 28792, 26380, 22986, 19116, 15992, 11820, 9641, 6566, 4914, 3351, 2127, 1464, 762, 460, 235, 104, 61, 25, 16, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [23211, 22039, 20939, 17940, 15815, 12032, 9155, 6190, 3938, 2485, 1492, 1030, 544, 335, 144, 64, 27, 10, 6, 6, 6, 6, 6, 6, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 0, 0, 0, 0, 0]], [[ 4480, 4500, 4499, 4497, 4495, 4496, 4498, 4496, 4497, 4495, 4493, 4490, 4467, 4437, 4408, 4355, 4291, 4203, 4126, 4083, 4023, 3933, 3862, 3720, 3623, 3499, 3372, 3223, 3021, 2743, 2453, 2158, 1695, 1372, 993, 769, 564, 440, 325, 225, 177, 86, 61, 47, 29, 20, 12, 4, 4], [28543, 28727, 28740, 28727, 28740, 28726, 28730, 28692, 28682, 28643, 28594, 28574, 28433, 28267, 27703, 27276, 26293, 25968, 25412, 24898, 23886, 23121, 22107, 21230, 19737, 18648, 16673, 15521, 13530, 12295, 10212, 8902, 6885, 5734, 4083, 3214, 1968, 1358, 888, 453, 283, 115, 43, 27, 5, 4, 0, 0, 0], [25516, 25481, 25434, 25346, 25226, 25062, 24859, 24609, 24294, 23897, 23304, 22553, 21292, 19975, 18100, 16357, 14305, 12092, 10478, 8442, 7184, 5590, 4348, 2969, 2050, 1368, 823, 563, 344, 230, 115, 48, 22, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [32602, 32386, 32069, 31482, 31128, 30489, 30139, 29314, 28114, 25690, 22304, 18818, 13925, 11099, 7246, 5532, 3778, 2802, 2228, 1733, 1358, 1009, 730, 466, 328, 161, 84, 48, 15, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [26374, 26253, 26139, 25353, 24470, 22322, 19979, 16887, 13414, 10584, 7419, 5781, 3810, 2785, 1692, 1068, 540, 230, 122, 35, 15, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], [[ 5864, 6282, 6275, 6263, 6262, 6266, 6267, 6288, 6295, 6294, 6299, 6300, 6300, 6300, 6297, 6297, 6297, 6295, 6293, 6287, 6273, 6248, 6223, 6179, 6126, 6065, 5986, 5869, 5767, 5600, 5457, 5254, 4985, 4708, 4294, 3943, 3439, 2991, 2589, 2130, 1857, 1400, 1131, 906, 640, 499, 302, 179, 102], [28058, 28591, 28636, 28646, 28659, 28652, 28653, 28638, 28639, 28616, 28569, 28546, 28508, 28488, 28400, 28338, 27852, 27630, 27088, 26703, 25280, 24744, 23457, 22708, 21295, 20504, 19182, 18447, 16783, 15947, 13857, 12707, 10354, 8909, 7020, 5680, 4199, 3219, 2389, 1398, 1041, 526, 289, 186, 58, 36, 9, 1, 0], [24198, 24225, 24193, 24096, 24055, 24004, 23967, 23948, 23914, 23841, 23727, 23537, 23205, 22774, 22126, 21348, 20305, 18961, 17572, 15528, 13984, 12186, 10555, 8836, 7424, 5913, 4563, 3585, 2288, 1625, 857, 497, 283, 119, 64, 26, 14, 13, 13, 10, 2, 0, 0, 0, 0, 0, 0, 0, 0], [36251, 36142, 36085, 35978, 35882, 35712, 35446, 35053, 34637, 33850, 32712, 31096, 28191, 25721, 21310, 18219, 14005, 10939, 8571, 6216, 4670, 3151, 2219, 1254, 770, 381, 200, 109, 34, 17, 5, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [23594, 23481, 23372, 23092, 22838, 22132, 21284, 19876, 18201, 16345, 13776, 11721, 8513, 6616, 4616, 3212, 2297, 1447, 1044, 543, 324, 120, 61, 27, 21, 18, 16, 15, 15, 14, 10, 10, 5, 5, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]])
%matplotlib notebook
tao.u.isel(longitude=0).sel(time=slice("1992", "1993")).plot(x="time")
tao.eucmax.isel(longitude=0).sel(time=slice("1992", "1993")).plot(
x="time", lw=0.5, xlim=["1992", "1993"]
)
[<matplotlib.lines.Line2D at 0x2b7aef5ee0f0>]
after binning instead of reinterpolating to euc depth coordinate#
fg = median_Rig.where(median_Rig.num_obs > 60 * 24).plot.line(
col="longitude",
hue="season",
y="zeuc",
xlim=[1e-1, 10],
ylim=[0, 250],
xscale="log",
)
fg.map(lambda: dcpy.plots.linex(0.25, ax=plt.gca()))
fg.fig.set_size_inches((10, 4))

after gridding T,u to same grid#
some minor differences especially at 110W
%matplotlib inline
fg = (
Ri_q.where(Ri_q.num_obs > 60 * 24)
.sel(quantile=50)
.plot.line(
col="longitude",
hue="season",
y="zeuc",
xlim=[1e-1, 2],
ylim=[0, 250],
xscale="log",
)
)
fg.map(lambda: dcpy.plots.linex(0.25, ax=plt.gca()))
fg.fig.set_size_inches((10, 4))

after filling NaNs with pchip#
and properly filtering eucmax
fg = (
Ri_q.where(Ri_q.num_obs > 90 * 24)
.sel(quantile=50)
.plot.line(
col="longitude",
hue="season",
y="zeuc",
xlim=[1e-1, 2],
ylim=[0, 250],
xscale="log",
)
)
fg.map(lambda: dcpy.plots.linex(0.25, ax=plt.gca()))
fg.fig.set_size_inches((10, 4))
fg.fig.savefig("images/tao-marginal-stability-zeuc-Rig-median.png", dpi=200)

before filling NaNs with pchip#
fg = (
Ri_q.where(Ri_q.num_obs > 30 * 24)
.sel(quantile=50)
.plot.line(
col="longitude",
hue="season",
y="zeuc",
xlim=[1e-1, 2],
ylim=[0, 250],
xscale="log",
)
)
fg.map(lambda: dcpy.plots.linex(0.25, ax=plt.gca()))
fg.fig.set_size_inches((10, 4))
fg.fig.savefig("images/tao-marginal-stability-zeuc-Rig-median.png", dpi=200)
# Ri_q.Ri.sel(quantile=50).plot(xscale="log", xlim=[0.1, 2], y="zeuc", hue="season", col="longitude", ylim=[0, 250])

Using number of observations > 90#
This seems to work best.
There is an error here. Need 90*24
fg = (
Ri_q.sel(quantile=50)
.where(Ri_q.num_obs > 90)
.plot.line(col="longitude", hue="season", y="zeuc", xlim=[0, 2], ylim=[0, 250])
)
[dcpy.plots.linex(0.25, ax=ax) for ax in fg.axes.flat]
[None, None, None, None, None]

after removing mld#
fg = Ri_q.sel(quantile=50).plot.line(
col="longitude", hue="season", y="zeuc", xlim=[0, 2], ylim=[0, 250]
)
[dcpy.plots.linex(0.25, ax=ax) for ax in fg.axes.flat]
[None, None, None, None, None]

before removing mld#
fg = (
Ri_q.sel(quantile=50)
.isel(zeuc=slice(None, None, 2))
.plot.line(col="longitude", hue="season", y="zeuc", xlim=[0, 2], ylim=[0, 250])
)
[dcpy.plots.linex(0.25, ax=ax) for ax in fg.axes.flat]
[None, None, None, None, None]

Before limiting eucmax to be deeper than 20m#
Ri_q.sel(quantile=50).plot.line(
col="longitude", hue="season", y="zeuc", xlim=[0, 2], ylim=[0, 200]
)
<xarray.plot.facetgrid.FacetGrid at 0x2b00a6c4a2e8>

Ri_q = (
Ri.chunk({"time": -1, "depth": 25})
.groupby("time.season")
.apply(dask_quantile, dim="time", q=[25, 50, 75])
).reindex(season=["DJF", "MAM", "JJA", "SON"])
Ri_q
<xarray.DataArray 'Ri' (season: 4, depth: 135, longitude: 5, quantile: 3)> dask.array<getitem, shape=(4, 135, 5, 3), dtype=float64, chunksize=(1, 25, 1, 3), chunktype=numpy.ndarray> Coordinates: * season (season) object 'DJF' 'MAM' 'JJA' 'SON' latitude float32 0.0 * quantile (quantile) int64 25 50 75 * depth (depth) float32 -750.0 -500.0 -495.0 -490.0 ... -3.0 -1.0 -0.0 * longitude (longitude) float32 -204.0 -195.0 -170.0 -140.0 -110.0
Ri_q.sel(quantile=50).plot.line(
y="depth", hue="season", col="longitude", xlim=[0, 2], ylim=[-100, 0]
)
<xarray.plot.facetgrid.FacetGrid at 0x2b79f92b9898>

Ri.Ri.groupby("time.season").quantile([25, 50, 75])
Ri.Ri.groupby("time.season").quantile
median = Ri.Ri.groupby("time.season").apply(lambda x: dask_median(x, "time"))
<xarray.DataArray 'Ri' (season: 4, depth: 135, longitude: 5)> dask.array<concatenate, shape=(4, 135, 5), dtype=float64, chunksize=(1, 10, 1), chunktype=numpy.ndarray> Coordinates: latitude float32 0.0 * depth (depth) float32 -750.0 -500.0 -495.0 -490.0 ... -3.0 -1.0 -0.0 * longitude (longitude) float64 -204.0 -195.0 -170.0 -140.0 -110.0 * season (season) object 'DJF' 'JJA' 'MAM' 'SON'
seasonal = Ri.groupby("time.season")
for season, Ris in seasonal:
Rigrouped = Ris.Ri.groupby_bins(Ris.zeuc, np.arange(0, 200, 10))
for bin, group in Rigrouped:
print(bin)
seasonal = (
Ri.groupby("time.season")
.apply(lambda x: dask_median(x, "time"))
.reindex(season=["DJF", "MAM", "JJA", "SON"])
)
fg = seasonal.plot.line(
col="longitude",
hue="season",
y="depth",
ylim=[-150, 0],
xlim=[0.1, 3.5],
xscale="log",
)
fg.map(lambda: dcpy.plots.linex([0.25, 0.3]))
plt.gcf().suptitle("Seasonal median 5m Ri | Hourly mean TAO ADCP, T ", y=1.02)
plt.gcf().set_size_inches((8, 4))
plt.gcf().set_dpi(200)
# f, ax = plt.subplots(1, 1, constrained_layout=True)
# f.savefig('images/tao-marginal-stability-hourly.png')
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-90-95983074cd2a> in <module>
2
3 for season, Ris in seasonal:
----> 4 Rigrouped = Ris.Ri.groupby_bins(Ris.zeuc, np.arange(0, 200, 10))
5 for bin, group in Rigrouped:
6 print(bin)
/gpfs/u/home/dcherian/python/xarray/xarray/core/common.py in groupby_bins(self, group, bins, right, labels, precision, include_lowest, squeeze, restore_coord_dims)
734 "labels": labels,
735 "precision": precision,
--> 736 "include_lowest": include_lowest,
737 },
738 )
/gpfs/u/home/dcherian/python/xarray/xarray/core/groupby.py in __init__(self, obj, group, squeeze, grouper, bins, restore_coord_dims, cut_kwargs)
321 raise ValueError("`group` must have a name")
322
--> 323 group, obj, stacked_dim, inserted_dims = _ensure_1d(group, obj)
324 (group_dim,) = group.dims
325
/gpfs/u/home/dcherian/python/xarray/xarray/core/groupby.py in _ensure_1d(group, obj)
192 # the copy is necessary here, otherwise read only array raises error
193 # in pandas: https://github.com/pydata/pandas/issues/12813
--> 194 group = group.stack(**{stacked_dim: orig_dims}).copy()
195 obj = obj.stack(**{stacked_dim: orig_dims})
196 else:
/gpfs/u/home/dcherian/python/xarray/xarray/core/dataarray.py in stack(self, dimensions, **dimensions_kwargs)
1723 DataArray.unstack
1724 """
-> 1725 ds = self._to_temp_dataset().stack(dimensions, **dimensions_kwargs)
1726 return self._from_temp_dataset(ds)
1727
/gpfs/u/home/dcherian/python/xarray/xarray/core/dataset.py in stack(self, dimensions, **dimensions_kwargs)
3232 result = self
3233 for new_dim, dims in dimensions.items():
-> 3234 result = result._stack_once(dims, new_dim)
3235 return result
3236
/gpfs/u/home/dcherian/python/xarray/xarray/core/dataset.py in _stack_once(self, dims, new_dim)
3188 # consider dropping levels that are unused?
3189 levels = [self.get_index(dim) for dim in dims]
-> 3190 idx = utils.multiindex_from_product_levels(levels, names=dims)
3191 variables[new_dim] = IndexVariable(new_dim, idx)
3192
KeyboardInterrupt:
How good is bulk Ri vs gradient Ri#
# del tao.time.encoding["_FillValue"]
tao.to_zarr("tao-gridded-ancillary.zarr", mode="w", consolidated=True)
<xarray.backends.zarr.ZarrStore at 0x2b3780b1e888>
tao = pump.obs.read_tao_zarr("gridded")
tao
- depth: 101
- longitude: 5
- time: 292267
- deepest(time, longitude)float64dask.array<chunksize=(10000, 1), meta=np.ndarray>
- description :
- Deepest depth with a valid observation
Array Chunk Bytes 11.69 MB 80.00 kB Shape (292267, 5) (10000, 1) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - depth(depth)float64-500.0 -495.0 -490.0 ... -5.0 0.0
array([-500., -495., -490., -485., -480., -475., -470., -465., -460., -455., -450., -445., -440., -435., -430., -425., -420., -415., -410., -405., -400., -395., -390., -385., -380., -375., -370., -365., -360., -355., -350., -345., -340., -335., -330., -325., -320., -315., -310., -305., -300., -295., -290., -285., -280., -275., -270., -265., -260., -255., -250., -245., -240., -235., -230., -225., -220., -215., -210., -205., -200., -195., -190., -185., -180., -175., -170., -165., -160., -155., -150., -145., -140., -135., -130., -125., -120., -115., -110., -105., -100., -95., -90., -85., -80., -75., -70., -65., -60., -55., -50., -45., -40., -35., -30., -25., -20., -15., -10., -5., 0.])
- eucmax(time, longitude)float64dask.array<chunksize=(10000, 2), meta=np.ndarray>
- long_name :
- Depth of EUC max
- units :
- m
Array Chunk Bytes 11.69 MB 160.00 kB Shape (292267, 5) (10000, 2) Count 226 Tasks 90 Chunks Type float64 numpy.ndarray - latitude()float32...
- FORTRAN_format :
- epic_code :
- 500
- type :
- EVEN
- units :
- degree_north
array(0., dtype=float32)
- longitude(longitude)float32-204.0 -195.0 -170.0 -140.0 -110.0
- FORTRAN_format :
- epic_code :
- 502
- type :
- EVEN
- units :
- degree_east
array([-204., -195., -170., -140., -110.], dtype=float32)
- mld(time, longitude)float64dask.array<chunksize=(10000, 1), meta=np.ndarray>
Array Chunk Bytes 11.69 MB 80.00 kB Shape (292267, 5) (10000, 1) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - time(time)datetime64[ns]1985-10-01T06:00:00 ... 2019-02-03
- FORTRAN_format :
- point_spacing :
- even
- type :
- EVEN
array(['1985-10-01T06:00:00.000000000', '1985-10-01T07:00:00.000000000', '1985-10-01T08:00:00.000000000', ..., '2019-02-02T22:00:00.000000000', '2019-02-02T23:00:00.000000000', '2019-02-03T00:00:00.000000000'], dtype='datetime64[ns]')
- zeuc(depth, time, longitude)float64dask.array<chunksize=(101, 10000, 1), meta=np.ndarray>
Array Chunk Bytes 1.18 GB 8.08 MB Shape (101, 292267, 5) (101, 10000, 1) Count 976 Tasks 150 Chunks Type float64 numpy.ndarray
- Rig(time, longitude, depth)float64dask.array<chunksize=(10000, 1, 101), meta=np.ndarray>
- long_name :
- Ri
Array Chunk Bytes 1.18 GB 8.08 MB Shape (292267, 5, 101) (10000, 1, 101) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - T(time, longitude, depth)float64dask.array<chunksize=(10000, 1, 101), meta=np.ndarray>
Array Chunk Bytes 1.18 GB 8.08 MB Shape (292267, 5, 101) (10000, 1, 101) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - dens(time, longitude, depth)float64dask.array<chunksize=(10000, 1, 101), meta=np.ndarray>
Array Chunk Bytes 1.18 GB 8.08 MB Shape (292267, 5, 101) (10000, 1, 101) Count 12603 Tasks 150 Chunks Type float64 numpy.ndarray - u(time, depth, longitude)float32dask.array<chunksize=(10000, 101, 1), meta=np.ndarray>
- FORTRAN_format :
- epic_code :
- 1205
- generic_name :
- u
- long_name :
- u
- name :
- u
- units :
- m/s
Array Chunk Bytes 590.38 MB 4.04 MB Shape (292267, 101, 5) (10000, 101, 1) Count 151 Tasks 150 Chunks Type float32 numpy.ndarray - v(time, depth, longitude)float32dask.array<chunksize=(10000, 101, 1), meta=np.ndarray>
- FORTRAN_format :
- epic_code :
- 1206
- generic_name :
- v
- long_name :
- v
- name :
- v
- units :
- m/s
Array Chunk Bytes 590.38 MB 4.04 MB Shape (292267, 101, 5) (10000, 101, 1) Count 151 Tasks 150 Chunks Type float32 numpy.ndarray
tao_zeuc = xr.open_zarr("tao-zeuc.zarr", consolidated=True)
tao_zeuc
- longitude: 5
- time: 292267
- zeuc: 59
- deepest(time, longitude)float64dask.array<chunksize=(10000, 1), meta=np.ndarray>
- description :
- Deepest depth with a valid observation
Array Chunk Bytes 11.69 MB 80.00 kB Shape (292267, 5) (10000, 1) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - eucmax(time, longitude)float64dask.array<chunksize=(292267, 5), meta=np.ndarray>
- long_name :
- Depth of EUC max
- units :
- m
Array Chunk Bytes 11.69 MB 11.69 MB Shape (292267, 5) (292267, 5) Count 2 Tasks 1 Chunks Type float64 numpy.ndarray - latitude()float32...
- FORTRAN_format :
- epic_code :
- 500
- type :
- EVEN
- units :
- degree_north
array(0., dtype=float32)
- longitude(longitude)float32-204.0 -195.0 -170.0 -140.0 -110.0
- FORTRAN_format :
- epic_code :
- 502
- type :
- EVEN
- units :
- degree_east
array([-204., -195., -170., -140., -110.], dtype=float32)
- mld(time, longitude)float64dask.array<chunksize=(10000, 1), meta=np.ndarray>
Array Chunk Bytes 11.69 MB 80.00 kB Shape (292267, 5) (10000, 1) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - time(time)datetime64[ns]1985-10-01T06:00:00 ... 2019-02-03
- FORTRAN_format :
- point_spacing :
- even
- type :
- EVEN
array(['1985-10-01T06:00:00.000000000', '1985-10-01T07:00:00.000000000', '1985-10-01T08:00:00.000000000', ..., '2019-02-02T22:00:00.000000000', '2019-02-02T23:00:00.000000000', '2019-02-03T00:00:00.000000000'], dtype='datetime64[ns]')
- zeuc(zeuc)float64-47.5 -42.5 -37.5 ... 237.5 242.5
array([-47.5, -42.5, -37.5, -32.5, -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5, 52.5, 57.5, 62.5, 67.5, 72.5, 77.5, 82.5, 87.5, 92.5, 97.5, 102.5, 107.5, 112.5, 117.5, 122.5, 127.5, 132.5, 137.5, 142.5, 147.5, 152.5, 157.5, 162.5, 167.5, 172.5, 177.5, 182.5, 187.5, 192.5, 197.5, 202.5, 207.5, 212.5, 217.5, 222.5, 227.5, 232.5, 237.5, 242.5])
- Rig(time, longitude, zeuc)float64dask.array<chunksize=(10000, 1, 59), meta=np.ndarray>
Array Chunk Bytes 689.75 MB 4.72 MB Shape (292267, 5, 59) (10000, 1, 59) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - T(time, longitude, zeuc)float64dask.array<chunksize=(10000, 1, 59), meta=np.ndarray>
Array Chunk Bytes 689.75 MB 4.72 MB Shape (292267, 5, 59) (10000, 1, 59) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - dens(time, longitude, zeuc)float64dask.array<chunksize=(10000, 1, 59), meta=np.ndarray>
Array Chunk Bytes 689.75 MB 4.72 MB Shape (292267, 5, 59) (10000, 1, 59) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - u(time, longitude, zeuc)float64dask.array<chunksize=(10000, 1, 59), meta=np.ndarray>
Array Chunk Bytes 689.75 MB 4.72 MB Shape (292267, 5, 59) (10000, 1, 59) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - v(time, longitude, zeuc)float64dask.array<chunksize=(10000, 1, 59), meta=np.ndarray>
Array Chunk Bytes 689.75 MB 4.72 MB Shape (292267, 5, 59) (10000, 1, 59) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray
tao_clim["Rig"] = pump.calc.calc_tao_ri(
tao_clim[["u", "v"]].expand_dims(time=1), tao_clim["T"].expand_dims(time=1)
)
tao_clim.Rib.plot(x="longitude")
# tao_clim.Rig.plot(x="longitude")
[<matplotlib.lines.Line2D at 0x2b37dfb427f0>]

interped.sel(zeuc=slice(0, None)).quantile(dim="zeuc", q=0.5).count("time").compute()
- longitude: 5
- 21840 107780 102208 136161 97035
array([ 21840, 107780, 102208, 136161, 97035])
- longitude(longitude)float64-204.0 -195.0 -170.0 -140.0 -110.0
- FORTRAN_format :
- epic_code :
- 502
- type :
- EVEN
- units :
- degree_east
array([-204., -195., -170., -140., -110.])
- quantile()float640.5
array(0.5)
Ri_q = xr.load_dataarray("tao-hourly-Ri-seasonal-percentiles.nc")
Ri_q
- season: 4
- longitude: 5
- zeuc: 59
- quantile: 3
- 0.8657 1.847 4.079 0.9686 2.076 4.698 ... nan nan nan nan nan nan
array([[[[8.65716985e-01, 1.84699736e+00, 4.07929186e+00], [9.68607747e-01, 2.07586669e+00, 4.69831821e+00], [1.12714689e+00, 2.45510051e+00, 5.63565819e+00], ..., [8.25933339e-01, 1.21812980e+00, 2.22266901e+00], [3.31773526e-02, 2.15271859e-01, 6.91555336e-01], [6.30251313e-01, 9.59637420e-01, 1.28902353e+00]], [[6.99998537e-01, 1.29253461e+00, 2.86526357e+00], [7.26263211e-01, 1.40190939e+00, 3.03401490e+00], [8.14764327e-01, 1.58527315e+00, 3.47211588e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[1.04342082e+00, 1.80473934e+00, 3.48219512e+00], [1.10594958e+00, 1.94826060e+00, 3.84621979e+00], [1.18464712e+00, 2.10952571e+00, 4.29768611e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[5.99332633e-01, 1.01832679e+00, 2.02945611e+00], [6.36358415e-01, 1.09730253e+00, 2.22929311e+00], [6.69077456e-01, 1.17499171e+00, 2.47144998e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[3.93460173e-01, 6.78976245e-01, 1.35634816e+00], [3.96662435e-01, 6.72044675e-01, 1.30979069e+00], [3.89880826e-01, 6.65452753e-01, 1.31105090e+00], ..., [1.71923451e+00, 2.11843237e+00, 3.14030388e+00], [ nan, nan, nan], [ nan, nan, nan]]], [[[9.64841693e-01, 2.03641443e+00, 5.24673701e+00], [1.00937285e+00, 2.07883897e+00, 5.36984820e+00], [1.07954196e+00, 2.17156104e+00, 5.51939592e+00], ..., [9.45015072e-01, 1.23069288e+00, 3.89244182e+00], [3.19059242e-01, 4.46329690e-01, 1.42386922e+00], [ nan, nan, nan]], [[9.77766440e-01, 1.94110422e+00, 4.23775491e+00], [1.02809324e+00, 2.09342055e+00, 4.71047287e+00], [1.20866875e+00, 2.40437219e+00, 5.50768658e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[1.06829041e+00, 1.84754009e+00, 3.53931845e+00], [1.11732667e+00, 1.94676703e+00, 3.81204909e+00], [1.15610819e+00, 2.03169397e+00, 4.13639554e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[6.45954343e-01, 1.04209220e+00, 1.87051596e+00], [6.91774334e-01, 1.11851238e+00, 2.00851346e+00], [7.23639413e-01, 1.19311723e+00, 2.28014936e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[3.90188842e-01, 5.96989693e-01, 1.09097169e+00], [3.99915480e-01, 6.17991764e-01, 1.10944998e+00], [4.09988742e-01, 6.36251961e-01, 1.14362343e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]]], [[[8.05875978e-01, 1.64882518e+00, 3.74725616e+00], [8.49498749e-01, 1.81732453e+00, 4.24185284e+00], [9.22981317e-01, 1.94493706e+00, 4.58776057e+00], ..., [3.77534561e-01, 5.81013898e-01, 1.00414836e+00], [4.43140283e-01, 2.25869804e+00, 6.26462169e+00], [7.27405524e-01, 1.93333063e+00, 1.82996463e+01]], [[8.33461276e-01, 1.78540849e+00, 4.40883574e+00], [8.75326686e-01, 1.94566370e+00, 4.97448619e+00], [1.09038278e+00, 2.41704308e+00, 5.99210430e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[1.03154098e+00, 1.90779205e+00, 4.02230303e+00], [1.06865210e+00, 2.04293217e+00, 4.50922149e+00], [1.09868897e+00, 2.09941647e+00, 4.83581297e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[6.13561831e-01, 9.54200964e-01, 1.59989813e+00], [6.30494824e-01, 9.95023982e-01, 1.67218575e+00], [6.41170129e-01, 1.02841434e+00, 1.77831551e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[3.93044016e-01, 6.17636578e-01, 1.07574078e+00], [3.96811132e-01, 6.24261383e-01, 1.06323474e+00], [3.92496939e-01, 6.23224291e-01, 1.09776787e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]]], [[[7.20142171e-01, 1.55444359e+00, 3.42266777e+00], [7.95652503e-01, 1.63517308e+00, 3.68113071e+00], [8.57140530e-01, 1.82649115e+00, 4.21420888e+00], ..., [2.47228307e-01, 6.21093974e-01, 1.91750068e+00], [3.27682126e-01, 1.10605834e+00, 3.20444965e+00], [3.40164626e-01, 5.65530493e-01, 1.53144780e+00]], [[6.63675669e-01, 1.31916576e+00, 3.00179180e+00], [6.91861346e-01, 1.44553130e+00, 3.44077254e+00], [8.46168409e-01, 1.73035774e+00, 4.14209451e+00], ..., [6.55769401e-02, 3.88032611e-01, 8.03026828e-01], [6.08337896e+01, 6.08337896e+01, 6.08337896e+01], [ nan, nan, nan]], [[1.22505629e+00, 2.16464382e+00, 4.25647302e+00], [1.31365069e+00, 2.36794923e+00, 4.86517140e+00], [1.38017117e+00, 2.53467087e+00, 5.59876342e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[6.04536606e-01, 1.02415097e+00, 1.99978561e+00], [6.29322459e-01, 1.08261699e+00, 2.06070930e+00], [6.45054365e-01, 1.11824484e+00, 2.15339242e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]], [[3.98786048e-01, 6.72431954e-01, 1.26091140e+00], [4.02719219e-01, 6.77482230e-01, 1.26239862e+00], [3.97279637e-01, 6.78105856e-01, 1.31576185e+00], ..., [ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]]]])
- season(season)object'DJF' 'MAM' 'JJA' 'SON'
array(['DJF', 'MAM', 'JJA', 'SON'], dtype=object)
- latitude()float320.0
- FORTRAN_format :
- epic_code :
- 500
- type :
- EVEN
- units :
- degree_north
array(0., dtype=float32)
- longitude(longitude)float32-204.0 -195.0 -170.0 -140.0 -110.0
- FORTRAN_format :
- epic_code :
- 502
- type :
- EVEN
- units :
- degree_east
array([-204., -195., -170., -140., -110.], dtype=float32)
- quantile(quantile)int6425 50 75
array([25, 50, 75])
- zeuc(zeuc)float64-47.5 -42.5 -37.5 ... 237.5 242.5
- long_name :
- Depth relative to EUC max
- units :
- m
array([-47.5, -42.5, -37.5, -32.5, -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5, 52.5, 57.5, 62.5, 67.5, 72.5, 77.5, 82.5, 87.5, 92.5, 97.5, 102.5, 107.5, 112.5, 117.5, 122.5, 127.5, 132.5, 137.5, 142.5, 147.5, 152.5, 157.5, 162.5, 167.5, 172.5, 177.5, 182.5, 187.5, 192.5, 197.5, 202.5, 207.5, 212.5, 217.5, 222.5, 227.5, 232.5, 237.5, 242.5])
- num_obs(season, longitude, zeuc)int642956 3450 3685 4162 ... 0 0 0 0
array([[[ 2956, 3450, 3685, ..., 11, 4, 2], [13003, 15472, 16505, ..., 0, 0, 0], [25255, 25759, 26188, ..., 0, 0, 0], [32022, 32550, 32964, ..., 0, 0, 0], [22159, 22496, 22742, ..., 7, 0, 0]], [[ 3942, 4331, 4609, ..., 16, 10, 0], [17279, 19213, 19858, ..., 0, 0, 0], [24860, 25030, 25287, ..., 0, 0, 0], [31769, 32155, 32493, ..., 0, 0, 0], [23765, 23781, 23797, ..., 0, 0, 0]], [[ 3745, 3967, 4061, ..., 12, 4, 4], [20430, 22423, 23235, ..., 0, 0, 0], [25438, 25492, 25513, ..., 0, 0, 0], [30761, 31005, 31326, ..., 0, 0, 0], [26311, 26305, 26311, ..., 0, 0, 0]], [[ 1779, 2291, 2663, ..., 302, 179, 102], [17003, 19290, 20532, ..., 9, 1, 0], [23085, 23454, 23690, ..., 0, 0, 0], [35541, 35937, 36215, ..., 0, 0, 0], [22990, 23038, 23080, ..., 0, 0, 0]]])
median_Rig = interped.sel(zeuc=slice(0, None)).quantile(dim="zeuc", q=0.5)
median_Rig
- time: 292267
- longitude: 5
- dask.array<chunksize=(10000, 1), meta=np.ndarray>
Array Chunk Bytes 11.69 MB 80.00 kB Shape (292267, 5) (10000, 1) Count 48664 Tasks 150 Chunks Type float64 numpy.ndarray - longitude(longitude)float64-204.0 -195.0 -170.0 -140.0 -110.0
- FORTRAN_format :
- epic_code :
- 502
- type :
- EVEN
- units :
- degree_east
array([-204., -195., -170., -140., -110.])
- time(time)datetime64[ns]1985-10-01T06:00:00 ... 2019-02-03
- FORTRAN_format :
- point_spacing :
- even
- type :
- EVEN
array(['1985-10-01T06:00:00.000000000', '1985-10-01T07:00:00.000000000', '1985-10-01T08:00:00.000000000', ..., '2019-02-02T22:00:00.000000000', '2019-02-02T23:00:00.000000000', '2019-02-03T00:00:00.000000000'], dtype='datetime64[ns]')
- eucmax(time, longitude)float64dask.array<chunksize=(292267, 5), meta=np.ndarray>
- long_name :
- Depth of EUC max
- units :
- m
Array Chunk Bytes 11.69 MB 11.69 MB Shape (292267, 5) (292267, 5) Count 1 Tasks 1 Chunks Type float64 numpy.ndarray - mld(time, longitude)float64dask.array<chunksize=(10000, 1), meta=np.ndarray>
Array Chunk Bytes 11.69 MB 80.00 kB Shape (292267, 5) (10000, 1) Count 3417 Tasks 150 Chunks Type float64 numpy.ndarray - deepest(time, longitude)float64dask.array<chunksize=(10000, 1), meta=np.ndarray>
- description :
- Deepest depth with a valid observation
Array Chunk Bytes 11.69 MB 80.00 kB Shape (292267, 5) (10000, 1) Count 2517 Tasks 150 Chunks Type float64 numpy.ndarray - quantile()float640.5
array(0.5)
quick fix. Take median of bulk Ri
median_Rib = (
bulk_Ri.groupby("time.season")
.apply(lambda x: x.chunk({"time": -1}).quantile(q=0.5, dim="time"))
.compute()
)
/gpfs/u/home/dcherian/python/xarray/xarray/core/common.py:664: FutureWarning: This DataArray contains multi-dimensional coordinates. In the future, the dimension order of these coordinates will be restored as well unless you specify restore_coord_dims=False.
self, group, squeeze=squeeze, restore_coord_dims=restore_coord_dims
medians = xr.Dataset()
medians["Rib"] = median_Rib
medians["Rig"] = median_Rig.sel(zeuc=slice(0, None)).median("zeuc")
fg = medians.plot.scatter(x="Rib", y="Rig", hue="season", col="longitude")
fg.axes[0, 0].set_xscale("log")
fg.axes[0, 0].set_yscale("log")

tao_bulk = pump.calc.estimate_euc_depth_terms(tao, inplace=False)
bulk_Ri = tao_bulk["Rib"]
Ri = xr.Dataset({"bulk": bulk_Ri, "gradient": median_Rig})
Ri["season"] = Ri.time.dt.season
Ri.load()
/gpfs/u/home/dcherian/python/xarray/xarray/core/missing.py:393: FutureWarning: This DataArray contains multi-dimensional coordinates. In the future, these coordinates will be transposed as well unless you specify transpose_coords=False.
).transpose(*arr.dims)
/gpfs/u/home/dcherian/python/xarray/xarray/core/missing.py:393: FutureWarning: This DataArray contains multi-dimensional coordinates. In the future, these coordinates will be transposed as well unless you specify transpose_coords=False.
).transpose(*arr.dims)
- longitude: 5
- time: 292267
- latitude()float320.0
- FORTRAN_format :
- epic_code :
- 500
- type :
- EVEN
- units :
- degree_north
array(0., dtype=float32)
- longitude(longitude)float64-204.0 -195.0 -170.0 -140.0 -110.0
- FORTRAN_format :
- epic_code :
- 502
- type :
- EVEN
- units :
- degree_east
array([-204., -195., -170., -140., -110.])
- time(time)datetime64[ns]1985-10-01T06:00:00 ... 2019-02-03
- FORTRAN_format :
- point_spacing :
- even
- type :
- EVEN
array(['1985-10-01T06:00:00.000000000', '1985-10-01T07:00:00.000000000', '1985-10-01T08:00:00.000000000', ..., '2019-02-02T22:00:00.000000000', '2019-02-02T23:00:00.000000000', '2019-02-03T00:00:00.000000000'], dtype='datetime64[ns]')
- eucmax(time, longitude)float64nan nan nan nan ... nan nan nan nan
- long_name :
- Depth of EUC max
- units :
- m
array([[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]])
- mld(time, longitude)float64nan nan nan nan ... nan -5.0 -5.0
array([[ nan, nan, nan, nan, -5.], [ nan, nan, nan, nan, -10.], [ nan, nan, nan, nan, -10.], ..., [ nan, -75., nan, -5., -5.], [ nan, -70., nan, -5., -5.], [ nan, -20., nan, -5., -5.]])
- deepest(time, longitude)float64nan nan nan ... nan -500.0 -500.0
- description :
- Deepest depth with a valid observation
array([[ nan, nan, nan, nan, -300.], [ nan, nan, nan, nan, -300.], [ nan, nan, nan, nan, -300.], ..., [ nan, -500., nan, -500., -500.], [ nan, -500., nan, -500., -500.], [ nan, -500., nan, -500., -500.]])
- quantile()float640.5
array(0.5)
- bulk(time, longitude)float64nan nan nan nan ... nan nan nan nan
array([[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]])
- gradient(time, longitude)float64nan nan nan nan ... nan nan nan nan
array([[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]])
- season(time)<U3'SON' 'SON' 'SON' ... 'DJF' 'DJF'
array(['SON', 'SON', 'SON', ..., 'DJF', 'DJF', 'DJF'], dtype='<U3')
# Ri.time.encoding.pop("_FillValue")
Ri.to_netcdf("rib-median-rig.nc")
tao.T.sel(longitude=-170).plot(x="time")
<matplotlib.collections.QuadMesh at 0x2b09a25efc18>

tao.u.sel(longitude=-170).plot(x="time")
tao.eucmax.sel(longitude=-170).plot(x="time")
[<matplotlib.lines.Line2D at 0x2b098b736208>]

tao.u.sel(longitude=-140, time=slice("1996-09-04", "1996-12-01")).plot(x="time")
<matplotlib.collections.QuadMesh at 0x2b34a38ac2e8>

tao.eucmax.plot.line(x="time", col="longitude")
<xarray.plot.facetgrid.FacetGrid at 0x2b0982c0de48>

fg = tao.ueuc.plot(x="time", col="longitude")
fg.map(lambda: plt.gca().axhline(0, color="k", ls="--"))
<xarray.plot.facetgrid.FacetGrid at 0x2b098b6678d0>

tao.dens_euc.compute().plot.line(x="time", col="longitude")
<xarray.plot.facetgrid.FacetGrid at 0x2b098f0a2cf8>

Ri.to_netcdf("rib-median-rig.nc")
Estimate and plot histograms#
Ri = xr.load_dataset("rib-median-rig.nc")
Ri
- longitude: 5
- time: 292267
- deepest(time, longitude)float64nan nan nan nan ... nan nan nan nan
- description :
- Deepest depth with a valid observation
array([[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]])
- eucmax(time, longitude)float64nan nan nan nan ... nan nan nan nan
- long_name :
- Depth of EUC max
- units :
- m
array([[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]])
- latitude()float640.0
array(0.)
- longitude(longitude)float32-204.0 -195.0 -170.0 -140.0 -110.0
- FORTRAN_format :
- epic_code :
- 502
- type :
- EVEN
- units :
- degree_east
array([-204., -195., -170., -140., -110.], dtype=float32)
- mld(time, longitude)float64nan nan nan nan ... nan nan nan nan
array([[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]])
- time(time)datetime64[ns]1985-10-01T06:00:00 ... 2019-02-03
- FORTRAN_format :
- point_spacing :
- even
- type :
- EVEN
array(['1985-10-01T06:00:00.000000000', '1985-10-01T07:00:00.000000000', '1985-10-01T08:00:00.000000000', ..., '2019-02-02T22:00:00.000000000', '2019-02-02T23:00:00.000000000', '2019-02-03T00:00:00.000000000'], dtype='datetime64[ns]')
- quantile()float640.5
array(0.5)
- bulk(time, longitude)float64nan nan nan nan ... nan nan nan nan
array([[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]])
- gradient(time, longitude)float64nan nan nan nan ... nan nan nan nan
array([[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]])
- season(time)object'SON' 'SON' 'SON' ... 'DJF' 'DJF'
array(['SON', 'SON', 'SON', ..., 'DJF', 'DJF', 'DJF'], dtype=object)
def plot_Ri_histograms(Ri_hist, **kwargs):
if "season" in Ri_hist:
kwargs.setdefault("row", "season")
fg = Ri_hist.where(Ri_hist > 0).plot(
col="longitude",
x="bulk_bin",
y="gradient_bin",
xscale="log",
yscale="log",
cmap=mpl.cm.BuGn,
cbar_kwargs={
"orientation": "horizontal",
# "label": "probability density",
"aspect": 40,
"shrink": 0.6,
"pad": 0.1,
},
**kwargs
)
def mark_lines():
lstyle = dict(zorder=10, lw=0.5)
dcpy.plots.linex([0.25, 1], ax=plt.gca(), **lstyle)
dcpy.plots.liney([0.25, 1], ax=plt.gca(), **lstyle)
plt.gca().set_aspect(1)
dcpy.plots.line45(ax=plt.gca(), **lstyle)
fg.set_xlabels("$Ri_b$")
fg.set_ylabels("$Ri_g$")
fg.fig.set_size_inches((8, 8))
fg.map(mark_lines)
fg.map_dataarray(
xr.plot.contour,
x="bulk_bin",
y="gradient_bin",
colors="w",
levels=np.linspace(*np.nanpercentile(Ri_hist, [99.1, 99.9]), 3),
linewidths=0.3,
add_colorbar=False,
)
return fg
At hourly timescales this is pretty noisy. Bulk Ri in the central Pac is O(10) when calculated from annual means. I have to show that Rib_b is a reasonable estimate of the median Ri_g over some long time scale?
?Ri.bulk.clip
lon = -204
Ri.bulk.clip(min=0, max=100).sel(longitude=lon).plot(x="time")
# Ri.bulk.clip(max=100).resample(time="M").mean().sel(longitude=lon).plot(x="time")
Ri.gradient.clip(max=100).sel(longitude=lon).plot(x="time")
Ri.gradient.clip(max=100).resample(time="M").mean().sel(longitude=lon).plot(x="time")
[<matplotlib.lines.Line2D at 0x2b37ecee7278>]

def wrap_hist(ds, density=True):
from xhistogram.xarray import histogram
hist_over = ("time",)
xbins = xr.DataArray(np.logspace(-1, 2, 100), dims="bulk_bin")
ybins = xr.DataArray(np.logspace(-1, 2, 100), dims="gradient_bin")
counts = histogram(
ds.bulk,
ds.gradient,
dim=hist_over,
bins=[xbins.values, ybins.values],
)
if density:
dens = (
counts
/ xbins.diff("bulk_bin")
/ ybins.diff("gradient_bin")
/ counts.sum(set(counts.dims) - set(hist_over))
)
dens.name = "PDF"
else:
dens = counts
dens.name = "counts"
return dens
plot_Ri_histograms(
wrap_hist(Ri, density=False),
norm=mpl.colors.LogNorm(vmin=1, vmax=100),
)
plot_Ri_histograms(
wrap_hist(Ri, density=True),
norm=mpl.colors.LogNorm(vmin=1e-5, vmax=0.5),
)
/gpfs/u/home/dcherian/python/xarray/xarray/core/dataarray.py:695: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
return key in self.data
/gpfs/u/home/dcherian/python/xarray/xarray/plot/plot.py:966: UserWarning: No contour levels were found within the data range.
primitive = ax.contour(x, y, z, **kwargs)
<xarray.plot.facetgrid.FacetGrid at 0x2b37e02c1908>
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/matplotlib/colors.py:1110: RuntimeWarning: invalid value encountered in less_equal
mask |= resdat <= 0


reduced_Ri = (
Ri.drop("season").map(lambda x: x.clip(min=0, max=100)).resample(time="D").median()
)
plot_Ri_histograms(
wrap_hist(reduced_Ri, density=False),
norm=mpl.colors.LogNorm(vmin=1, vmax=10),
)
plot_Ri_histograms(
wrap_hist(reduced_Ri, density=True),
norm=mpl.colors.LogNorm(vmin=1e-5, vmax=0.5),
)
/gpfs/u/home/dcherian/python/xarray/xarray/core/dataarray.py:695: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
return key in self.data
/gpfs/u/home/dcherian/python/xarray/xarray/plot/plot.py:966: UserWarning: No contour levels were found within the data range.
primitive = ax.contour(x, y, z, **kwargs)
<xarray.plot.facetgrid.FacetGrid at 0x2b3797906588>
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/matplotlib/colors.py:1110: RuntimeWarning: invalid value encountered in less_equal
mask |= resdat <= 0


seasonal Rib vs Rig#
Ri_seasonal_hist = (
Ri.groupby("season").apply(wrap_hist).reindex(season=["DJF", "MAM", "JJA", "SON"])
)
Ri_seasonal_hist
- season: 4
- longitude: 5
- bulk_bin: 49
- gradient_bin: 49
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 1 1 1 0 1 1 2 2 0 1 0 1 1 0 0 0
array([[[[ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0]], [[ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 2, ..., 0, 0, 0]], [[ 1, 3, 3, ..., 0, 0, 0], [12, 1, 3, ..., 0, 0, 0], [ 4, 4, 2, ..., 0, 0, 0], ..., [ 0, 1, 0, ..., 1, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0]], [[ 3, 6, 8, ..., 0, 0, 0], [ 7, 9, 9, ..., 0, 0, 0], [12, 20, 13, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 1, ..., 1, 0, 0]], [[ 2, 8, 2, ..., 0, 0, 0], [ 7, 4, 3, ..., 0, 0, 0], [ 6, 2, 4, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 1, 1, 0], [ 0, 0, 0, ..., 1, 1, 0], [ 0, 0, 0, ..., 2, 0, 1]]], [[[ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0]], [[ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 0, 0, 0], [ 0, 1, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0]], [[ 1, 0, 3, ..., 0, 0, 0], [ 0, 1, 2, ..., 0, 0, 0], [ 2, 1, 1, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 2, 1, 0], [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 1, 0]], [[ 0, 5, 5, ..., 0, 0, 0], [ 2, 4, 8, ..., 0, 0, 0], [ 3, 4, 3, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 0, 1, 0], [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0]], [[ 2, 2, 7, ..., 0, 1, 0], [ 3, 6, 6, ..., 0, 0, 0], [ 3, 2, 11, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 1, 2, 1], [ 0, 0, 0, ..., 2, 1, 3], [ 0, 0, 0, ..., 4, 2, 1]]], [[[ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 1], [ 0, 0, 0, ..., 0, 0, 0]], [[ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 1, 0, 0], [ 0, 0, 0, ..., 0, 1, 0], [ 0, 0, 0, ..., 0, 0, 0]], [[ 1, 2, 4, ..., 0, 0, 0], [ 2, 3, 2, ..., 0, 0, 0], [ 5, 1, 5, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 1, 0, 0], [ 0, 0, 0, ..., 0, 0, 1], [ 0, 0, 0, ..., 0, 0, 0]], [[ 2, 5, 5, ..., 0, 0, 0], [ 2, 7, 5, ..., 0, 0, 0], [ 4, 2, 10, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0]], [[ 4, 5, 5, ..., 0, 0, 0], [ 4, 5, 5, ..., 0, 0, 0], [ 3, 7, 4, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 1], [ 0, 0, 0, ..., 0, 0, 1]]], [[[ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0]], [[ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 1, 0], [ 0, 0, 0, ..., 0, 0, 0]], [[ 2, 3, 3, ..., 0, 0, 0], [ 1, 3, 7, ..., 0, 0, 0], [ 1, 2, 5, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0]], [[ 2, 5, 8, ..., 0, 0, 0], [ 4, 7, 5, ..., 0, 0, 0], [ 7, 6, 13, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0], [ 0, 0, 0, ..., 0, 0, 0]], [[ 6, 3, 6, ..., 0, 0, 0], [ 3, 8, 6, ..., 0, 0, 0], [ 7, 11, 15, ..., 0, 0, 0], ..., [ 0, 0, 0, ..., 0, 0, 2], [ 0, 0, 0, ..., 0, 0, 1], [ 0, 0, 0, ..., 0, 0, 0]]]])
- season(season)object'DJF' 'MAM' 'JJA' 'SON'
array(['DJF', 'MAM', 'JJA', 'SON'], dtype=object)
- gradient_bin(gradient_bin)float640.1049 0.1153 ... 8.695 9.551
array([0.104927, 0.115267, 0.126625, 0.139103, 0.15281 , 0.167868, 0.18441 , 0.202582, 0.222545, 0.244475, 0.268566, 0.295031, 0.324103, 0.356041, 0.391125, 0.429667, 0.472007, 0.518519, 0.569615, 0.625745, 0.687407, 0.755145, 0.829558, 0.911303, 1.001104, 1.099754, 1.208125, 1.327175, 1.457957, 1.601625, 1.759451, 1.93283 , 2.123293, 2.332525, 2.562374, 2.814874, 3.092255, 3.396969, 3.73171 , 4.099437, 4.5034 , 4.947171, 5.43467 , 5.970209, 6.55852 , 7.204804, 7.914774, 8.694705, 9.551491])
- bulk_bin(bulk_bin)float640.1049 0.1153 ... 8.695 9.551
array([0.104927, 0.115267, 0.126625, 0.139103, 0.15281 , 0.167868, 0.18441 , 0.202582, 0.222545, 0.244475, 0.268566, 0.295031, 0.324103, 0.356041, 0.391125, 0.429667, 0.472007, 0.518519, 0.569615, 0.625745, 0.687407, 0.755145, 0.829558, 0.911303, 1.001104, 1.099754, 1.208125, 1.327175, 1.457957, 1.601625, 1.759451, 1.93283 , 2.123293, 2.332525, 2.562374, 2.814874, 3.092255, 3.396969, 3.73171 , 4.099437, 4.5034 , 4.947171, 5.43467 , 5.970209, 6.55852 , 7.204804, 7.914774, 8.694705, 9.551491])
- longitude(longitude)float32-204.0 -195.0 -170.0 -140.0 -110.0
- FORTRAN_format :
- epic_code :
- 502
- type :
- EVEN
- units :
- degree_east
array([-204., -195., -170., -140., -110.], dtype=float32)
fg = Ri_seasonal_hist.where(Ri_hist > 0).plot(
row="season",
col="longitude",
x="bulk_bin",
y="gradient_bin",
robust=True,
xscale="log",
yscale="log",
cmap=mpl.cm.BuGn,
cbar_kwargs={
"orientation": "horizontal",
"label": "probability density",
"aspect": 40,
"shrink": 0.6,
"pad": 0.1,
},
)
def mark_lines():
dcpy.plots.linex([0.25, 1], ax=plt.gca(), zorder=10, lw=0.5)
dcpy.plots.liney([0.25, 1], ax=plt.gca(), zorder=10, lw=0.5)
plt.gca().set_aspect(1)
fg.set_xlabels("$Ri_b$")
fg.set_ylabels("$Ri_g$")
fg.fig.set_size_inches((8, 8))
fg.map(mark_lines)
fg.map_dataarray(
xr.plot.contour,
x="bulk_bin",
y="gradient_bin",
colors="w",
levels=np.linspace(*np.nanpercentile(Ri_hist, [99.1, 99.9]), 3),
linewidths=0.3,
add_colorbar=False,
)
fg.fig.savefig("images/gradient-bulk-ri-joint-pdf.png", dpi=200, bbox_inches="tight")

mask = (
Ri.bulk.notnull()
& Ri.gradient.notnull()
& (Ri.gradient < 100)
& (Ri.bulk < 100)
& (Ri.bulk > 0)
& (Ri.gradient > 0)
)
masked = Ri.where(mask, drop=True)
masked["season"] = masked.time.dt.season
fg = masked.plot.scatter(
col="longitude",
x="bulk",
y="gradient",
s=0.5,
alpha=0.1,
)
plt.gca().set_xscale("log")
plt.gca().set_yscale("log")
plt.gca().set_xlim([0.1, 100])
plt.gca().set_ylim([0.1, 100])
# fg.fig.savefig("images/bulk-vs-gradient-ri.png", dpi=180)
(0.1, 100)

Datasets#
johnson#
johnson = pump.obs.read_johnson().sel(latitude=0)
johnson["eucmax"] = pump.get_euc_max(johnson.u)
johnson = pump.calc.estimate_euc_depth_terms(johnson)
johnson.attrs["name"] = "Johnson"
johnson.load()
- depth: 50
- lon_edges: 11
- longitude: 10
- longitude(longitude)float64-217.0 -204.0 ... -110.0 -95.0
- units :
- degrees_east
- point_spacing :
- uneven
- edges :
- XLONedges
array([-217., -204., -195., -180., -170., -155., -140., -125., -110., -95.])
- lon_edges(lon_edges)float64136.5 149.5 160.5 ... 257.5 272.5
- edges :
array([136.5, 149.5, 160.5, 172.5, 185. , 197.5, 212.5, 227.5, 242.5, 257.5, 272.5])
- latitude()float640.0
- units :
- degrees_north
- point_spacing :
- even
array(0.)
- depth(depth)float64-5.0 -15.0 -25.0 ... -485.0 -495.0
- units :
- m
- positive :
- down
- point_spacing :
- even
array([ -5., -15., -25., -35., -45., -55., -65., -75., -85., -95., -105., -115., -125., -135., -145., -155., -165., -175., -185., -195., -205., -215., -225., -235., -245., -255., -265., -275., -285., -295., -305., -315., -325., -335., -345., -355., -365., -375., -385., -395., -405., -415., -425., -435., -445., -455., -465., -475., -485., -495.])
- temp(depth, longitude)float3229.32408 29.32196 ... 8.023529
- long_name :
- Potential Temperature (If > 16 obs)
- history :
- From meanfit2
- units :
- Degrees C
array([[29.32408 , 29.32196 , 28.98892 , 27.90945 , 27.43092 , 26.43207 , 25.66783 , 24.77945 , 23.91235 , 24.17392 ], [29.32408 , 29.32196 , 28.98892 , 27.90945 , 27.43092 , 26.43207 , 25.39479 , 24.34854 , 23.30844 , 22.8154 ], [29.29031 , 29.10626 , 28.98892 , 27.90945 , 27.43092 , 26.32236 , 25.08089 , 23.83151 , 22.59741 , 21.35751 ], [29.22716 , 28.85828 , 29.0114 , 27.90945 , 27.40585 , 26.19342 , 24.70398 , 23.20563 , 21.73312 , 19.89951 ], [29.11751 , 28.58234 , 29.05516 , 27.87341 , 27.31975 , 26.02008 , 24.24197 , 22.44806 , 20.66937 , 18.54071 ], [28.94427 , 28.2827 , 29.0847 , 27.76042 , 27.1562 , 25.77721 , 23.67273 , 21.53607 , 19.36005 , 17.27875 ], [28.69038 , 27.96368 , 29.06453 , 27.56325 , 26.89882 , 25.43964 , 22.97412 , 20.47206 , 17.89484 , 16.1673 ], [28.33871 , 27.62956 , 28.95915 , 27.27461 , 26.5312 , 24.98222 , 22.12405 , 19.28279 , 16.3996 , 15.52618 ], [27.24928 , 27.28465 , 28.73305 , 26.88725 , 26.03697 , 24.37979 , 21.1004 , 18.04407 , 15.63684 , 15.06998 ], [25.69624 , 26.93323 , 28.35072 , 26.39389 , 25.39972 , 23.60722 , 19.84656 , 16.81937 , 15.05563 , 14.80109 ], [24.59415 , 26.48326 , 27.7767 , 25.78729 , 24.60304 , 22.45779 , 18.73473 , 15.87775 , 14.61612 , 14.55823 ], [23.90182 , 25.50484 , 26.97545 , 25.06018 , 23.35297 , 21.11325 , 17.78653 , 15.24286 , 14.258 , 14.27493 ], [23.15096 , 24.33902 , 25.91148 , 23.97722 , 21.85654 , 19.80803 , 16.86479 , 14.74571 , 13.99222 , 14.04681 ], [22.37863 , 23.50153 , 24.51822 , 22.65346 , 20.51752 , 18.60098 , 16.02727 , 14.30791 , 13.78873 , 13.86414 ], [21.68732 , 22.04544 , 23.06126 , 21.44217 , 19.28545 , 17.58766 , 15.38237 , 13.97093 , 13.57544 , 13.72467 ], [20.75703 , 20.77695 , 21.44151 , 20.42384 , 18.23784 , 16.74146 , 14.86705 , 13.68599 , 13.41086 , 13.5976 ], [19.96706 , 20.23109 , 20.21817 , 19.33298 , 17.41815 , 15.88654 , 14.37912 , 13.43445 , 13.27631 , 13.52286 ], [19.07982 , 19.43237 , 19.01668 , 18.2585 , 16.60391 , 15.13246 , 13.90611 , 13.26233 , 13.1532 , 13.40552 ], [18.10533 , 18.32791 , 17.97375 , 17.35115 , 15.82162 , 14.52766 , 13.51637 , 13.09442 , 13.06415 , 13.28369 ], [17.32513 , 17.43242 , 17.09192 , 16.40903 , 15.11705 , 14.05872 , 13.22348 , 12.94258 , 12.98453 , 13.18607 ], [16.56908 , 16.7054 , 16.05908 , 15.53229 , 14.43898 , 13.6187 , 12.98932 , 12.80449 , 12.91074 , 13.12445 ], [15.7403 , 15.8884 , 15.31093 , 14.62061 , 13.92845 , 13.23193 , 12.79079 , 12.67036 , 12.83368 , 13.08475 ], [14.88843 , 15.19087 , 14.61732 , 13.94189 , 13.51976 , 12.93842 , 12.62874 , 12.58163 , 12.74707 , 13.03943 ], [14.21449 , 14.37332 , 14.08969 , 13.49072 , 13.14166 , 12.73004 , 12.49225 , 12.49564 , 12.64725 , 12.99365 ], [13.67493 , 13.87909 , 13.63873 , 13.13522 , 12.8201 , 12.5076 , 12.36952 , 12.40393 , 12.54868 , 12.95062 ], [13.21628 , 13.4469 , 13.15767 , 12.78528 , 12.54713 , 12.32721 , 12.25945 , 12.30789 , 12.43127 , 12.8425 ], [12.69659 , 13.01869 , 12.89626 , 12.48763 , 12.30817 , 12.12895 , 12.14195 , 12.18086 , 12.31851 , 12.62442 ], [12.2379 , 12.68857 , 12.62312 , 12.22984 , 12.05876 , 11.98328 , 12.01073 , 12.00888 , 12.22034 , 12.25964 ], [11.88644 , 12.39337 , 12.36827 , 11.95863 , 11.81403 , 11.86166 , 11.87872 , 11.80838 , 12.06009 , 11.85861 ], [11.60667 , 12.02661 , 12.15102 , 11.71196 , 11.6461 , 11.72345 , 11.7348 , 11.63666 , 11.85245 , 11.64828 ], [11.36227 , 11.84581 , 11.97107 , 11.44998 , 11.45624 , 11.57515 , 11.54443 , 11.44118 , 11.63568 , 11.41647 ], [11.2014 , 11.64331 , 11.67618 , 11.19637 , 11.22504 , 11.36928 , 11.31738 , 11.21265 , 11.36841 , 11.18402 ], [10.98215 , 11.39815 , 11.41144 , 11.00513 , 11.03409 , 11.16341 , 11.06606 , 11.00195 , 11.13129 , 10.93347 ], [10.73012 , 11.02322 , 11.15036 , 10.82312 , 10.85234 , 10.93846 , 10.84474 , 10.73927 , 10.85544 , 10.70337 ], [10.46219 , 10.70462 , 10.90627 , 10.65529 , 10.66057 , 10.67241 , 10.60849 , 10.49425 , 10.62375 , 10.51364 ], [10.2482 , 10.43069 , 10.64708 , 10.50499 , 10.42839 , 10.39482 , 10.31615 , 10.28821 , 10.44104 , 10.25812 ], [10.13878 , 10.18817 , 10.40074 , 10.32144 , 10.21191 , 10.1647 , 10.15469 , 10.05888 , 10.26425 , 10.06909 ], [10.04207 , 9.83345 , 10.17516 , 10.07573 , 9.969681, 9.956329, 10.00398 , 9.862122, 10.07703 , 9.853943], [ 9.937027, 9.620514, 9.944717, 9.900055, 9.722244, 9.762558, 9.859375, 9.653275, 9.828979, 9.652252], [ 9.758362, 9.455246, 9.742355, 9.722519, 9.506882, 9.548325, 9.669708, 9.449707, 9.597351, 9.48996 ], [ 9.57663 , 9.334534, 9.592117, 9.520996, 9.327911, 9.41275 , 9.4944 , 9.24881 , 9.396362, 9.327209], [ 9.408295, 9.236465, 9.4104 , 9.322113, 9.146378, 9.251678, 9.306137, 9.105072, 9.218933, 9.13736 ], [ 9.237915, 9.127319, 9.243271, 9.092224, 8.990463, 9.085892, 9.121628, 8.981293, 9.049103, 8.939606], [ 9.012558, 9.014236, 9.053009, 8.903809, 8.833206, 8.919189, 8.962875, 8.840866, 8.874451, 8.749969], [ 8.838165, 8.924759, 8.859741, 8.731323, 8.693237, 8.758499, 8.798279, 8.694916, 8.725861, 8.613098], [ 8.676407, 8.853699, 8.699463, 8.602127, 8.559341, 8.582352, 8.635315, 8.54184 , 8.593994, 8.476929], [ 8.531479, 8.777344, 8.537933, 8.480743, 8.441788, 8.45578 , 8.476379, 8.423401, 8.469025, 8.343597], [ 8.403397, 8.678635, 8.399918, 8.340393, 8.319824, 8.313049, 8.313309, 8.319244, 8.350708, 8.234406], [ 8.264923, 8.54155 , 8.266632, 8.211258, 8.189224, 8.205643, 8.163498, 8.215576, 8.241669, 8.132355], [ 8.149963, 8.364044, 8.138885, 8.082443, 8.085785, 8.113434, 8.038971, 8.120865, 8.131653, 8.023529]], dtype=float32)
- salt(depth, longitude)float3234.19115 34.45227 ... 34.63364
- long_name :
- Salinity (If > 16 obs)
- history :
- From meanfit2
array([[34.19115, 34.45227, 34.77197, 35.10362, 35.20035, 35.08017, 34.91434, 34.88116, 34.77487, 34.42538], [34.19115, 34.45227, 34.77197, 35.10362, 35.20035, 35.08017, 34.93756, 34.91861, 34.81915, 34.5513 ], [34.23563, 34.51073, 34.77197, 35.10362, 35.20035, 35.08202, 34.96658, 34.96786, 34.87271, 34.7316 ], [34.29428, 34.58981, 34.78226, 35.10362, 35.20233, 35.08423, 34.99948, 35.02048, 34.92984, 34.89874], [34.37 , 34.68227, 34.81055, 35.10739, 35.20792, 35.08775, 35.03435, 35.06799, 34.98483, 34.98526], [34.46564, 34.78075, 34.853 , 35.11786, 35.21649, 35.09349, 35.06926, 35.1019 , 35.03195, 35.00824], [34.58414, 34.87796, 34.90575, 35.13374, 35.22749, 35.1024 , 35.10231, 35.12231, 35.06473, 35.03207], [34.72836, 34.96657, 34.96497, 35.15375, 35.24034, 35.11539, 35.13158, 35.134 , 35.05405, 35.03503], [34.9373 , 35.03931, 35.02682, 35.17657, 35.25444, 35.13339, 35.15517, 35.15167, 35.03003, 35.00998], [35.07974, 35.08884, 35.08745, 35.20097, 35.26921, 35.15736, 35.16934, 35.1373 , 35.00513, 34.99847], [35.1535 , 35.10938, 35.14301, 35.22563, 35.28406, 35.20461, 35.16574, 35.09335, 34.99008, 34.99011], [35.18417, 35.15689, 35.18965, 35.24927, 35.31711, 35.24088, 35.16296, 35.05212, 34.97742, 34.98337], [35.21426, 35.1582 , 35.22354, 35.27348, 35.30492, 35.24562, 35.13309, 35.02576, 34.96542, 34.97742], [35.26941, 35.1566 , 35.24542, 35.30377, 35.32983, 35.2356 , 35.08498, 35.00104, 34.9577 , 34.96945], [35.29089, 35.1815 , 35.25694, 35.3414 , 35.3111 , 35.18716, 35.04697, 34.97842, 34.94647, 34.96326], [35.28278, 35.23138, 35.25937, 35.33232, 35.2655 , 35.1498 , 35.02155, 34.95728, 34.93915, 34.95807], [35.27933, 35.26804, 35.26962, 35.31262, 35.23154, 35.11311, 34.99522, 34.9451 , 34.93332, 34.95551], [35.27118, 35.25432, 35.2417 , 35.26328, 35.19061, 35.08121, 34.96991, 34.93658, 34.92593, 34.95013], [35.25504, 35.20674, 35.21436, 35.21555, 35.14104, 35.03889, 34.95471, 34.92856, 34.92044, 34.94034], [35.24103, 35.18182, 35.17174, 35.15184, 35.09428, 35.00682, 34.93967, 34.91943, 34.91571, 34.93237], [35.21672, 35.17496, 35.11241, 35.07944, 35.04143, 34.97726, 34.92383, 34.91055, 34.91052, 34.9274 ], [35.15515, 35.12094, 35.07687, 35.01402, 35.00288, 34.94701, 34.90823, 34.90182, 34.90646, 34.92493], [35.0829 , 35.08543, 35.03171, 34.97716, 34.97368, 34.92241, 34.89746, 34.8963 , 34.90237, 34.92242], [35.03551, 35.03549, 35.00185, 34.95581, 34.94153, 34.90765, 34.88925, 34.89029, 34.89655, 34.91986], [34.99211, 35.02132, 34.96918, 34.93452, 34.91536, 34.89056, 34.88123, 34.88339, 34.89011, 34.91721], [34.95396, 34.987 , 34.93456, 34.91089, 34.89389, 34.87691, 34.87334, 34.87601, 34.88202, 34.91043], [34.92433, 34.93976, 34.92464, 34.88953, 34.87749, 34.86264, 34.86488, 34.8663 , 34.87442, 34.89624], [34.89989, 34.91281, 34.90849, 34.87186, 34.86197, 34.8541 , 34.85587, 34.85406, 34.86801, 34.87308], [34.88025, 34.89453, 34.89005, 34.85168, 34.84573, 34.84709, 34.84656, 34.84052, 34.85745, 34.84787], [34.85989, 34.87015, 34.87263, 34.8353 , 34.83545, 34.8385 , 34.83659, 34.82959, 34.84399, 34.83401], [34.83737, 34.85526, 34.86157, 34.8166 , 34.8219 , 34.82869, 34.82416, 34.81876, 34.8302 , 34.81934], [34.82092, 34.83484, 34.83923, 34.79843, 34.80699, 34.81473, 34.80975, 34.80536, 34.81485, 34.80557], [34.8009 , 34.81364, 34.81848, 34.78638, 34.79536, 34.80148, 34.79367, 34.79214, 34.80072, 34.79089], [34.7773 , 34.78947, 34.79964, 34.7746 , 34.7836 , 34.78758, 34.78032, 34.77603, 34.78345, 34.77646], [34.75635, 34.76877, 34.78355, 34.76422, 34.77106, 34.77013, 34.76596, 34.76151, 34.76807, 34.7652 ], [34.74203, 34.75171, 34.76598, 34.75468, 34.75621, 34.75127, 34.74908, 34.74905, 34.75647, 34.75134], [34.73523, 34.73727, 34.74875, 34.74382, 34.74304, 34.73714, 34.73962, 34.73572, 34.74612, 34.74149], [34.72945, 34.71526, 34.7346 , 34.72931, 34.72842, 34.72542, 34.73079, 34.72449, 34.73557, 34.72974], [34.72185, 34.70065, 34.7204 , 34.71838, 34.71239, 34.71416, 34.72238, 34.71231, 34.72244, 34.71857], [34.70865, 34.689 , 34.7086 , 34.70758, 34.69878, 34.70198, 34.71201, 34.70163, 34.71014, 34.70978], [34.69536, 34.68063, 34.70045, 34.6946 , 34.68877, 34.69434, 34.70271, 34.69095, 34.69937, 34.70074], [34.68439, 34.67447, 34.68884, 34.68219, 34.67804, 34.68527, 34.69257, 34.68298, 34.68958, 34.69043], [34.67361, 34.66776, 34.67722, 34.66872, 34.66901, 34.67603, 34.68259, 34.67609, 34.68048, 34.67987], [34.65982, 34.66003, 34.6644 , 34.65845, 34.66011, 34.66681, 34.67422, 34.66867, 34.67117, 34.6702 ], [34.65039, 34.65517, 34.65262, 34.64856, 34.65201, 34.65866, 34.6658 , 34.66125, 34.66354, 34.66321], [34.64139, 34.6515 , 34.64371, 34.64093, 34.64473, 34.65001, 34.65744, 34.65366, 34.65683, 34.6564 ], [34.6333 , 34.64731, 34.63506, 34.63457, 34.63876, 34.64362, 34.64928, 34.64774, 34.65039, 34.64966], [34.62619, 34.64192, 34.62735, 34.6275 , 34.63257, 34.63666, 34.64122, 34.64227, 34.64423, 34.64404], [34.61801, 34.63422, 34.61969, 34.62085, 34.62584, 34.63124, 34.63382, 34.63693, 34.6387 , 34.63898], [34.61145, 34.62399, 34.6123 , 34.61426, 34.62076, 34.62677, 34.62744, 34.63205, 34.63336, 34.63364]], dtype=float32)
- dens(depth, longitude)float321021.3508 1021.5474 ... 1026.9829
- long_name :
- Potential Density (If > 16 obs)
- history :
- From meanfit2
- units :
- kg/m3
array([[1021.3508 , 1021.5474 , 1021.8989 , 1022.50433, 1022.73236, 1022.9604 , 1023.0737 , 1023.32007, 1023.49854, 1023.1566 ], [1021.3508 , 1021.5474 , 1021.8989 , 1022.50433, 1022.73236, 1022.9604 , 1023.1753 , 1023.4778 , 1023.70886, 1023.6479 ], [1021.39557, 1021.6636 , 1021.8989 , 1022.50433, 1022.73236, 1022.9963 , 1023.2932 , 1023.6685 , 1023.9539 , 1024.1934 ], [1021.4607 , 1021.80566, 1021.8991 , 1022.50433, 1022.74194, 1023.0384 , 1023.43225, 1023.8913 , 1024.2405 , 1024.7122 ], [1021.5542 , 1021.9666 , 1021.9057 , 1022.5189 , 1022.7739 , 1023.0952 , 1023.59717, 1024.1447 , 1024.5731 , 1025.1273 ], [1021.68384, 1022.13934, 1021.9277 , 1022.5636 , 1022.83295, 1023.17505, 1023.792 , 1024.4259 , 1024.9543 , 1025.455 ], [1021.8571 , 1022.3169 , 1021.97406, 1022.63947, 1022.92346, 1023.286 , 1024.0203 , 1024.7308 , 1025.3485 , 1025.7347 ], [1022.0816 , 1022.4922 , 1022.0537 , 1022.7476 , 1023.04987, 1023.43567, 1024.2844 , 1025.0522 , 1025.6979 , 1025.8828 ], [1022.5928 , 1022.65826, 1022.1755 , 1022.8888 , 1023.2157 , 1023.631 , 1024.586 , 1025.3784 , 1025.8541 , 1025.9651 ], [1023.18976, 1022.80804, 1022.34753, 1023.0635 , 1023.4243 , 1023.878 , 1024.9326 , 1025.6635 , 1025.9645 , 1026.0151 ], [1023.58185, 1022.96625, 1022.5772 , 1023.2717 , 1023.678 , 1024.2456 , 1025.2164 , 1025.8483 , 1026.0488 , 1026.0613 ], [1023.8116 , 1023.3071 , 1022.87054, 1023.5131 , 1024.0734 , 1024.6478 , 1025.4504 , 1025.9592 , 1026.1157 , 1026.1167 ], [1024.0541 , 1023.6619 , 1023.2315 , 1023.8569 , 1024.4912 , 1025.0009 , 1025.6495 , 1026.0482 , 1026.1627 , 1026.1605 ], [1024.3173 , 1023.9084 , 1023.6742 , 1024.2651 , 1024.8768 , 1025.3037 , 1025.8076 , 1026.1234 , 1026.1993 , 1026.1927 ], [1024.5277 , 1024.3445 , 1024.1124 , 1024.634 , 1025.1869 , 1025.5176 , 1025.9243 , 1026.1772 , 1026.2349 , 1026.217 ], [1024.7765 , 1024.7319 , 1024.5718 , 1024.9038 , 1025.4175 , 1025.6914 , 1026.0184 , 1026.2203 , 1026.2631 , 1026.2394 ], [1024.9847 , 1024.9062 , 1024.9109 , 1025.1758 , 1025.5927 , 1025.8615 , 1026.1038 , 1026.2628 , 1026.286 , 1026.2527 ], [1025.2092 , 1025.1055 , 1025.2029 , 1025.4106 , 1025.7551 , 1026.0062 , 1026.1843 , 1026.2914 , 1026.3053 , 1026.2726 ], [1025.4424 , 1025.3501 , 1025.4438 , 1025.5966 , 1025.8977 , 1026.1055 , 1026.2534 , 1026.3192 , 1026.319 , 1026.2899 ], [1025.6224 , 1025.551 , 1025.6251 , 1025.7709 , 1026.0197 , 1026.1808 , 1026.3016 , 1026.3427 , 1026.3313 , 1026.3036 ], [1025.7833 , 1025.7192 , 1025.8214 , 1025.9158 , 1026.1266 , 1026.2498 , 1026.3367 , 1026.3633 , 1026.342 , 1026.3123 ], [1025.927 , 1025.8671 , 1025.9633 , 1026.0663 , 1026.2051 , 1026.3057 , 1026.3643 , 1026.3832 , 1026.3542 , 1026.3184 ], [1026.0612 , 1025.9965 , 1026.0807 , 1026.1824 , 1026.2675 , 1026.3457 , 1026.388 , 1026.3964 , 1026.3684 , 1026.3254 ], [1026.1699 , 1026.136 , 1026.1704 , 1026.2595 , 1026.3197 , 1026.3759 , 1026.4084 , 1026.4086 , 1026.3837 , 1026.3326 ], [1026.2496 , 1026.2297 , 1026.2394 , 1026.3156 , 1026.3639 , 1026.4064 , 1026.4261 , 1026.4211 , 1026.398 , 1026.3392 ], [1026.3142 , 1026.2927 , 1026.311 , 1026.3674 , 1026.4012 , 1026.431 , 1026.4414 , 1026.4341 , 1026.4147 , 1026.3556 ], [1026.3954 , 1026.3431 , 1026.356 , 1026.4095 , 1026.4352 , 1026.4583 , 1026.4575 , 1026.4512 , 1026.4308 , 1026.3878 ], [1026.4662 , 1026.3881 , 1026.3976 , 1026.4459 , 1026.4712 , 1026.4795 , 1026.4757 , 1026.4746 , 1026.4448 , 1026.4412 ], [1026.5183 , 1026.4318 , 1026.4332 , 1026.4823 , 1026.5052 , 1026.4972 , 1026.4935 , 1026.5022 , 1026.4674 , 1026.4984 ], [1026.5552 , 1026.4838 , 1026.4618 , 1026.5164 , 1026.5288 , 1026.5166 , 1026.5131 , 1026.526 , 1026.4966 , 1026.5272 ], [1026.5831 , 1026.5066 , 1026.4877 , 1026.5508 , 1026.5537 , 1026.5369 , 1026.5391 , 1026.5541 , 1026.5267 , 1026.5591 ], [1026.5999 , 1026.5288 , 1026.5261 , 1026.5833 , 1026.5847 , 1026.5642 , 1026.57 , 1026.5857 , 1026.5645 , 1026.5912 ], [1026.6241 , 1026.558 , 1026.5593 , 1026.6088 , 1026.6105 , 1026.5917 , 1026.6034 , 1026.6138 , 1026.5969 , 1026.6251 ], [1026.651 , 1026.6079 , 1026.5927 , 1026.6323 , 1026.634 , 1026.6217 , 1026.6329 , 1026.6484 , 1026.6334 , 1026.6552 ], [1026.6821 , 1026.6489 , 1026.6244 , 1026.6542 , 1026.6586 , 1026.6558 , 1026.6638 , 1026.6804 , 1026.6627 , 1026.6799 ], [1026.7083 , 1026.684 , 1026.657 , 1026.6733 , 1026.6879 , 1026.69 , 1026.7019 , 1026.7068 , 1026.6859 , 1026.7137 ], [1026.7218 , 1026.7148 , 1026.6869 , 1026.6969 , 1026.7153 , 1026.7189 , 1026.7225 , 1026.7358 , 1026.7086 , 1026.7386 ], [1026.7339 , 1026.7583 , 1026.7151 , 1026.728 , 1026.7455 , 1026.7454 , 1026.7415 , 1026.7606 , 1026.7327 , 1026.7661 ], [1026.7458 , 1026.7826 , 1026.7434 , 1026.7495 , 1026.7748 , 1026.7694 , 1026.7595 , 1026.7863 , 1026.7646 , 1026.7913 ], [1026.7657 , 1026.8009 , 1026.7684 , 1026.771 , 1026.8 , 1026.7957 , 1026.7833 , 1026.8118 , 1026.7938 , 1026.8114 ], [1026.7858 , 1026.8142 , 1026.7872 , 1026.7944 , 1026.8217 , 1026.8121 , 1026.8052 , 1026.8363 , 1026.8187 , 1026.8312 ], [1026.805 , 1026.8254 , 1026.8082 , 1026.8175 , 1026.8428 , 1026.8314 , 1026.8282 , 1026.8533 , 1026.8401 , 1026.854 ], [1026.8245 , 1026.8379 , 1026.8264 , 1026.8442 , 1026.8608 , 1026.851 , 1026.8503 , 1026.8679 , 1026.8604 , 1026.8774 ], [1026.8501 , 1026.85 , 1026.8472 , 1026.8663 , 1026.8789 , 1026.8705 , 1026.8693 , 1026.8844 , 1026.881 , 1026.8999 ], [1026.8705 , 1026.8605 , 1026.8688 , 1026.886 , 1026.8947 , 1026.8895 , 1026.8889 , 1026.9016 , 1026.8986 , 1026.9159 ], [1026.8889 , 1026.8689 , 1026.8871 , 1026.9001 , 1026.9098 , 1026.9104 , 1026.908 , 1026.9196 , 1026.914 , 1026.9318 ], [1026.9052 , 1026.8777 , 1026.9055 , 1026.9141 , 1026.9233 , 1026.925 , 1026.9263 , 1026.9332 , 1026.9282 , 1026.947 ], [1026.9194 , 1026.889 , 1026.9209 , 1026.93 , 1026.9371 , 1026.9414 , 1026.945 , 1026.945 , 1026.9417 , 1026.9592 ], [1026.9342 , 1026.9043 , 1026.9352 , 1026.9446 , 1026.9518 , 1026.9535 , 1026.9619 , 1026.9565 , 1026.954 , 1026.9707 ], [1026.9464 , 1026.9237 , 1026.9487 , 1026.9589 , 1026.9634 , 1026.964 , 1026.9757 , 1026.967 , 1026.9664 , 1026.9829 ]], dtype=float32)
- u(depth, longitude)float320.08695984 0.1127472 ... nan nan
- long_name :
- U component of velocity
- history :
- From meanfit2
- units :
- m/s
array([[ 8.695984e-02, 1.127472e-01, 1.524353e-02, -1.189270e-01, -3.015137e-01, -3.043213e-01, -3.773346e-01, -1.208038e-01, -8.332825e-02, -1.861877e-01], [ 8.341980e-02, 1.353455e-01, 3.355408e-02, -1.002655e-01, -2.718811e-01, -2.579498e-01, -2.339020e-01, 3.550720e-02, 6.764221e-02, -1.617432e-02], [ 4.620361e-02, 1.165466e-01, 4.588318e-02, -7.801819e-02, -2.297363e-01, -1.702881e-01, -8.813477e-02, 1.996918e-01, 2.585754e-01, 2.067261e-01], [-1.550293e-02, 7.502747e-02, 5.908203e-02, -3.242493e-02, -1.621857e-01, -7.597351e-02, 5.973816e-02, 3.710785e-01, 4.628906e-01, 4.254761e-01], [-8.711243e-02, 1.896667e-02, 7.255554e-02, 1.246643e-02, -8.317566e-02, 2.496338e-02, 2.094879e-01, 5.490570e-01, 6.539917e-01, 5.830994e-01], [-1.540375e-01, -4.347229e-02, 8.641052e-02, 5.673218e-02, 5.538940e-03, 1.325378e-01, 3.608398e-01, 7.329712e-01, 8.052826e-01, 6.708374e-01], [-2.016754e-01, -1.040955e-01, 1.007233e-01, 1.006012e-01, 1.021271e-01, 2.467041e-01, 5.135651e-01, 9.245758e-01, 9.021301e-01, 7.123413e-01], [-2.154236e-01, -1.547241e-01, 1.156158e-01, 1.443329e-01, 2.048187e-01, 3.674316e-01, 6.674347e-01, 1.063049e+00, 9.161682e-01, 6.905518e-01], [-1.822052e-01, -1.871643e-01, 1.311493e-01, 1.881866e-01, 3.118134e-01, 4.947357e-01, 8.222046e-01, 1.109756e+00, 8.835602e-01, 6.234131e-01], [-1.288452e-01, -1.932678e-01, 1.474304e-01, 2.324066e-01, 4.213257e-01, 6.285553e-01, 9.803314e-01, 1.084610e+00, 8.134766e-01, 5.719604e-01], [-4.925537e-02, -1.495056e-01, 1.645355e-01, 2.772522e-01, 5.315552e-01, 7.843628e-01, 1.051697e+00, 1.021378e+00, 7.394714e-01, 5.158997e-01], [-1.098633e-03, -6.327820e-02, 1.825714e-01, 3.229675e-01, 6.489563e-01, 8.942719e-01, 1.056854e+00, 9.377899e-01, 6.436462e-01, 4.607849e-01], [ 5.458069e-02, 2.542114e-02, 2.016296e-01, 4.371948e-01, 7.398376e-01, 9.527435e-01, 1.010208e+00, 8.368683e-01, 5.527802e-01, 4.091492e-01], [ 1.172028e-01, 1.205750e-01, 2.369995e-01, 5.076141e-01, 7.891235e-01, 9.493256e-01, 9.315186e-01, 7.351685e-01, 4.722290e-01, 3.593445e-01], [ 1.567688e-01, 2.273102e-01, 2.850800e-01, 5.347595e-01, 8.105927e-01, 9.132996e-01, 8.379517e-01, 6.443481e-01, 3.985291e-01, 3.148499e-01], [ 2.116394e-01, 2.839203e-01, 3.376923e-01, 5.384521e-01, 8.122864e-01, 8.595123e-01, 7.484131e-01, 5.569000e-01, 3.392029e-01, 2.763977e-01], [ 2.561951e-01, 3.965759e-01, 3.799438e-01, 5.419769e-01, 7.734985e-01, 7.872620e-01, 6.551361e-01, 4.700775e-01, 2.832794e-01, 2.465820e-01], [ 2.909698e-01, 4.647217e-01, 4.096527e-01, 5.608826e-01, 7.182617e-01, 6.921082e-01, 5.640564e-01, 3.982391e-01, 2.414856e-01, 2.124329e-01], [ 3.351898e-01, 4.944916e-01, 4.251556e-01, 5.546722e-01, 6.461182e-01, 6.045837e-01, 4.808960e-01, 3.305969e-01, 2.084351e-01, 1.757812e-01], [ 3.651123e-01, 4.864502e-01, 4.245148e-01, 5.066528e-01, 5.726471e-01, 5.227509e-01, 4.061127e-01, 2.690430e-01, 1.748047e-01, 1.453857e-01], [ 3.980103e-01, 4.820404e-01, 4.007721e-01, 4.504395e-01, 4.949188e-01, 4.479980e-01, 3.345795e-01, 2.157440e-01, 1.431732e-01, 1.227722e-01], [ 4.239502e-01, 4.687500e-01, 3.651428e-01, 3.894348e-01, 4.218292e-01, 3.804016e-01, 2.717896e-01, 1.761932e-01, 1.075439e-01, 1.014709e-01], [ nan, 4.299316e-01, 3.158112e-01, 3.197327e-01, 3.539734e-01, 3.157654e-01, 2.140656e-01, 1.539001e-01, 7.321167e-02, 7.849121e-02], [ nan, 4.211578e-01, 2.572327e-01, 2.558136e-01, 2.936707e-01, 2.563477e-01, 1.590424e-01, 1.320953e-01, 4.878235e-02, 5.648804e-02], [ nan, 3.812561e-01, 2.008667e-01, 1.951752e-01, 2.291412e-01, 1.961060e-01, 1.091309e-01, 1.091919e-01, 3.186035e-02, 3.695679e-02], [ nan, 3.300781e-01, 1.551514e-01, 1.511841e-01, 1.643066e-01, 1.421814e-01, 5.932617e-02, 8.364868e-02, 1.728821e-02, 2.288818e-02], [ nan, 2.603912e-01, 1.189575e-01, 1.146240e-01, 1.084595e-01, 9.318542e-02, 1.634216e-02, 5.674744e-02, 3.082275e-03, 1.013184e-02], [ nan, 1.941986e-01, 7.278442e-02, 6.607056e-02, 5.632019e-02, 4.957581e-02, -2.172852e-02, 4.266357e-02, -6.408691e-03, 9.429932e-03], [ nan, 1.157990e-01, 4.563904e-02, 3.280640e-03, 1.614380e-02, 9.841919e-03, -5.218506e-02, 3.323364e-02, -9.414673e-03, 2.828979e-02], [ nan, 1.203613e-01, 1.246643e-02, -5.570984e-02, -2.716064e-02, -2.252197e-02, -7.606506e-02, 3.015137e-02, -8.316040e-03, 3.686523e-02], [ nan, 9.794617e-02, -4.412842e-02, -9.243774e-02, -6.040955e-02, -4.800415e-02, -8.935547e-02, 2.958679e-02, -6.530762e-03, 3.253174e-02], [ nan, 7.344055e-02, -7.162476e-02, -1.152039e-01, -9.327698e-02, -5.438232e-02, -7.911682e-02, 2.906799e-02, -7.827759e-03, 2.523804e-02], [ nan, 3.254700e-02, -9.220886e-02, -1.249847e-01, -1.132660e-01, -5.345154e-02, -7.229614e-02, 3.753662e-02, -8.239746e-03, 1.803589e-02], [ nan, -2.380371e-03, -1.158142e-01, -1.360931e-01, -1.222992e-01, -7.463074e-02, -5.857849e-02, 4.637146e-02, -3.097534e-03, 3.814697e-03], [ nan, nan, -1.109467e-01, -1.327057e-01, -1.240997e-01, -5.921936e-02, -3.999329e-02, 5.001831e-02, 9.918213e-04, -2.288818e-03], [ nan, nan, nan, -1.358490e-01, -1.091003e-01, -4.792786e-02, -2.346802e-02, 4.570007e-02, 4.135132e-03, -3.631592e-03], [ nan, nan, nan, -1.330261e-01, -9.156799e-02, -3.633118e-02, -8.117676e-03, 4.237366e-02, 5.706787e-03, -8.300781e-03], [ nan, nan, nan, -1.232758e-01, -7.325745e-02, -3.036499e-02, -9.216309e-03, 3.376770e-02, 4.547119e-03, -1.171875e-02], [ nan, nan, nan, -1.109924e-01, -7.661438e-02, -4.739380e-02, -2.273560e-03, 2.806091e-02, -1.876831e-02, -1.608276e-02], [ nan, nan, nan, -1.244202e-01, -5.711365e-02, -3.259277e-02, -3.532410e-02, -1.571655e-03, -1.554871e-02, -2.319336e-03], [ nan, nan, nan, -9.547424e-02, -3.237915e-02, -3.512573e-02, -3.874207e-02, 1.718140e-02, -1.019287e-02, 2.380371e-03], [ nan, nan, nan, -3.152466e-02, 1.884460e-02, -2.856445e-02, -4.353333e-02, 1.614380e-02, -7.949829e-03, 1.159668e-03], [ nan, nan, nan, 3.807068e-02, -1.484680e-02, -3.552246e-02, -5.863953e-02, 3.302002e-02, 1.257324e-02, nan], [ nan, nan, nan, nan, nan, -5.599976e-03, -2.841187e-02, 4.179382e-02, -9.516907e-02, nan], [ nan, nan, nan, nan, nan, nan, -4.182434e-02, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]], dtype=float32)
- TSPTS(depth, longitude)float3220.0 34.0 28.0 ... 47.0 38.0 24.0
- long_name :
- Number of CTD data pts used for T and S
- history :
- From meanfit2
- units :
- no unit
array([[ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., -53., -47., -38., -24.], [-20., -34., 28., 46., 50., -57., -53., -47., -38., -24.], [-20., -34., -28., 46., -50., -57., -53., -47., -38., -24.], [-20., -34., -28., -46., -50., -57., -53., -47., -38., 24.], [-20., -34., -28., -46., -50., -57., -53., 47., 38., 24.], [-20., -34., -28., -46., -50., -57., -53., 47., 38., 24.], [ 20., -34., -28., -46., -50., -57., -53., 47., 38., 24.], [ 20., -34., -28., -46., -50., -57., 53., 47., 38., 24.], [ 20., 34., -28., -46., -50., 57., 53., 47., 38., 24.], [ 20., 34., -28., -46., 50., 57., 53., 47., 38., 24.], [ 20., 34., -28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.], [ 20., 34., 28., 46., 50., 57., 53., 47., 38., 24.]], dtype=float32)
- UPTS(depth, longitude)float3220.0 34.0 27.0 ... nan 2.362488 nan
- long_name :
- Number of ADCP data pts used for U
- history :
- From meanfit2
- units :
- no unit
array([[ 20. , 34. , 27. , 45. , 49. , 57. , 53. , 47. , 38. , 24. ], [ 20. , 34. , 27. , 45. , 49. , 57. , -53. , -47. , -38. , -24. ], [-20. , -34. , 27. , 45. , 49. , -57. , -53. , -47. , -38. , -24. ], [-20. , -34. , -27. , 45. , -49. , -57. , -53. , -47. , -38. , -24. ], [-20. , -34. , -27. , -45. , -49. , -57. , -53. , -47. , -38. , 24. ], [-20. , -34. , -27. , -45. , -49. , -57. , -53. , 47. , 38. , 24. ], [-20. , -34. , -27. , -45. , -49. , -57. , -53. , 47. , 38. , 24. ], [ 20. , -34. , -27. , -45. , -49. , -57. , -53. , 47. , 38. , 24. ], [ 20. , -34. , -27. , -45. , -49. , -57. , 53. , 47. , 38. , 24. ], [ 20. , 34. , -27. , -45. , -49. , 57. , 53. , 47. , 38. , 24. ], [ 20. , 34. , -27. , -45. , 49. , 57. , 53. , 47. , 38. , 24. ], [ 20. , 34. , -27. , 45. , 49. , 57. , 53. , 47. , 38. , 24. ], [ 20. , 34. , 27. , 45. , 49. , 57. , 53. , 47. , 38. , 24. ], [ 20. , 34. , 27. , 45. , 49. , 57. , 53. , 47. , 38. , 24. ], [ 20. , 34. , 27. , 45. , 49. , 57. , 53. , 47. , 38. , 24. ], [ 19. , 33. , 27. , 45. , 49. , 57. , 53. , 47. , 38. , 24. ], [ 19. , 33. , 27. , 45. , 49. , 57. , 53. , 47. , 38. , 24. ], [ 19. , 33. , 27. , 45. , 49. , 57. , 53. , 47. , 38. , 24. ], [ 18. , 32. , 27. , 45. , 49. , 57. , 53. , 47. , 38. , 24. ], [ 17. , 31. , 27. , 44. , 49. , 57. , 53. , 47. , 38. , 24. ], [ 17. , 30. , 26. , 44. , 49. , 57. , 53. , 47. , 38. , 24. ], [ 17. , 30. , 26. , 44. , 49. , 56. , 53. , 47. , 38. , 24. ], [ 16. , 29. , 26. , 44. , 49. , 56. , 53. , 47. , 38. , 24. ], [ 16. , 29. , 26. , 43.08949 , 48. , 56. , 53. , 47. , 38. , 24. ], [ 16. , 29. , 26. , 42. , 47.63275 , 56. , 53. , 47. , 38. , 24. ], [ 16. , 28. , 25. , 41.29543 , 47. , 56. , 53. , 47. , 38. , 24. ], [ 16. , 28. , 25. , 40.06972 , 47. , 56. , 53. , 47. , 38. , 24. ], [ 15. , 28. , 24. , 40. , 47. , 56. , 53. , 47. , 38. , 24. ], [ 15. , 27. , 23. , 38.58197 , 45. , 55. , 53. , 46.79071 , 38. , 24. ], [ 13.50247 , 25. , 22.84517 , 37. , 45. , 54. , 52. , 46. , 38. , 24. ], [ 11.71429 , 25. , 21.25563 , 34. , 42.64449 , 52.65231 , 52. , 45.60422 , 38. , 24. ], [ 10.03615 , 24.13306 , 21. , 33. , 40. , 50.18347 , 48.04211 , 44. , 37. , 24. ], [ 10. , 22.21303 , 20. , 30.28235 , 35. , 47.68831 , 46.68185 , 44. , 37. , 24. ], [ 8. , 19. , 20. , 29.11446 , 33.38109 , 44. , 45.4581 , 44. , 37. , 24. ], [ 5.808273, 15.1183 , 19. , 24. , 28.15425 , 39.44559 , 43. , 44. , 37. , 24. ], [ 5. , 12.61229 , 15. , 24. , 26.22131 , 38. , 42. , 44. , 37. , 24. ], [ 5. , 12. , 14.32101 , 23. , 26. , 38. , 42. , 44. , 37. , 24. ], [ 4.240875, 9.18866 , 14. , 23. , 26. , 38. , 42. , 40.94077 , 37. , 22. ], [ 3. , 9. , 14. , 23. , 25. , 35.07103 , 40.11191 , 37. , 35. , 20.87506 ], [ 3. , 8.83989 , 13. , 23. , 24.00661 , 31.88373 , 36. , 33.83786 , 33.23816 , 18.86536 ], [ 3. , 7. , 13. , 22.57132 , 22.84377 , 29.79913 , 33.49008 , 29.51288 , 30.13312 , 18. ], [ 2.510162, 6.471069, 12.18974 , 20.26578 , 20.72708 , 27.6134 , 30.38028 , 23.01508 , 26.99951 , 16.61554 ], [ 1.56459 , 4.448212, 11. , 16.58417 , 18. , 21.64183 , 22.91777 , 18.66138 , 23.86865 , 11.52292 ], [ 1. , 4. , 9. , 15. , 15.35428 , 17.87775 , 19.07364 , 16.13197 , 17.61755 , 8. ], [ 1. , 4. , 9. , 11.24826 , 11.63588 , 14.0504 , 16.11916 , 14.53514 , 14. , 8. ], [ 1. , 4. , 6.587708, 9.979492, 9.022217, 9.942642, 10.64244 , 10.10248 , 11.61432 , 5.658813], [ 1. , 4. , 4.903351, 7.603943, 6.341446, 7.509903, 6.384354, 6.727173, 8.532501, 3.305084], [ 1. , 3.104813, 2.922562, 4.993423, 4.285583, 4.861572, 3.509277, 3.513107, 4.681305, 3. ], [ 1. , 2.571671, 1.485153, 2.552307, 2.825714, 3.300873, 1. , 1.706116, 3. , 1.931 ], [ nan, 2. , 1. , 1.124817, 1.663269, 1.606293, nan, nan, 2.362488, nan]], dtype=float32)
- eucmax(longitude)float64-215.0 -185.0 ... -75.0 -65.0
- units :
- m
- positive :
- down
- point_spacing :
- even
- long_name :
- Depth of EUC max
array([-215., -185., -185., -175., -155., -125., -115., -85., -75., -65.])
- h(longitude)float64-190.0 -160.0 ... -50.0 -40.0
- units :
- m
- positive :
- down
- point_spacing :
- even
- long_name :
- $h$
array([-190., -160., -160., -150., -130., -100., -90., -60., -50., -40.])
- us(longitude)float320.04620361 0.1165466 ... 0.2067261
- long_name :
- U component of velocity
- history :
- From meanfit2
- units :
- m/s
array([ 0.04620361, 0.1165466 , 0.04588318, -0.07801819, -0.2297363 , -0.1702881 , -0.08813477, 0.1996918 , 0.2585754 , 0.2067261 ], dtype=float32)
- ueuc(longitude)float320.4239502 0.4944916 ... 0.7123413
- long_name :
- U component of velocity
- history :
- From meanfit2
- units :
- m/s
array([0.4239502, 0.4944916, 0.4251556, 0.5608826, 0.8122864, 0.9527435, 1.056854 , 1.109756 , 0.9161682, 0.7123413], dtype=float32)
- du(longitude)float32-0.37774658 ... -0.50561523
- long_name :
- $\Delta$u
- history :
- From meanfit2
- units :
- m/s
array([-0.37774658, -0.377945 , -0.37927243, -0.6389008 , -1.0420227 , -1.1230316 , -1.1449888 , -0.9100642 , -0.6575928 , -0.50561523], dtype=float32)
- dens_euc(longitude)float641.026e+03 1.025e+03 ... 1.026e+03
- long_name :
- Potential Density (If > 16 obs)
- history :
- From meanfit2
- units :
- kg/m3
array([1025.92700195, 1025.35009766, 1025.44384766, 1025.41064453, 1025.41748047, 1025.00085449, 1025.45043945, 1025.37841797, 1025.69787598, 1025.73474121])
- b(depth, longitude)float64-9.766 -9.774 ... -9.822 -9.822
- long_name :
- Potential Density (If > 16 obs)
- history :
- From meanfit2
- units :
- kg/m3
array([[-9.76624275, -9.77361867, -9.77608781, -9.78219568, -9.78431232, -9.79047202, -9.78726336, -9.79030798, -9.78896585, -9.7853437 ], [-9.76624275, -9.77361867, -9.77608781, -9.78219568, -9.78431232, -9.79047202, -9.78823473, -9.79181657, -9.79097668, -9.79004213], [-9.76667015, -9.77473014, -9.77608781, -9.78219568, -9.78431232, -9.79081501, -9.78936324, -9.79364135, -9.79332074, -9.79525847], [-9.76729363, -9.77608925, -9.77608972, -9.78219568, -9.78440374, -9.79121802, -9.79069364, -9.79577281, -9.79606182, -9.80022062], [-9.76818745, -9.77762931, -9.77615257, -9.78233568, -9.7847104 , -9.79176204, -9.79227069, -9.79819665, -9.79924277, -9.80419071], [-9.7694268 , -9.77928175, -9.77636304, -9.78276329, -9.7852742 , -9.79252614, -9.79413439, -9.80088715, -9.8028893 , -9.8073249 ], [-9.77108403, -9.78097991, -9.77680682, -9.78348899, -9.78614084, -9.79358844, -9.79631902, -9.80380528, -9.80665865, -9.81000019], [-9.77323053, -9.78265712, -9.77756869, -9.78452325, -9.78734938, -9.79502042, -9.79884554, -9.80687961, -9.8100005 , -9.81141686], [-9.77811845, -9.78424671, -9.77873339, -9.7858737 , -9.788936 , -9.7968897 , -9.80173109, -9.8100006 , -9.81149529, -9.81220326], [-9.78382689, -9.78567915, -9.78037902, -9.7875451 , -9.79093214, -9.79925345, -9.80504709, -9.81272729, -9.81255022, -9.81268215], [-9.7875754 , -9.78719349, -9.78257605, -9.78953744, -9.79335875, -9.80277193, -9.80776217, -9.81449589, -9.81335664, -9.81312295], [-9.78977235, -9.79045458, -9.78538257, -9.79184692, -9.7971415 , -9.80662197, -9.81000013, -9.81555685, -9.81399645, -9.81365325], [-9.79209114, -9.79384899, -9.78883572, -9.79513543, -9.80113854, -9.8100004 , -9.81190478, -9.81640829, -9.81444584, -9.81407216], [-9.79460792, -9.79620718, -9.79307074, -9.79904107, -9.80482797, -9.81289864, -9.81341707, -9.8171283 , -9.81479621, -9.81438063], [-9.7966202 , -9.80037878, -9.7972629 , -9.80257052, -9.80779456, -9.81494609, -9.81453415, -9.81764259, -9.81513611, -9.81461293], [-9.79899895, -9.80408654, -9.80165791, -9.80515142, -9.81000021, -9.81660958, -9.8154341 , -9.81805498, -9.81540555, -9.81482714], [-9.80099029, -9.80575423, -9.80490156, -9.80775328, -9.81167636, -9.81823686, -9.81625024, -9.81846165, -9.81562548, -9.81495377], [-9.80313679, -9.80766002, -9.80769474, -9.81000085, -9.81323061, -9.81962215, -9.81702163, -9.81873498, -9.81581019, -9.81514418], [-9.8053661 , -9.81000011, -9.81000034, -9.81177891, -9.81459438, -9.82057203, -9.81768254, -9.81900165, -9.81594063, -9.81530984], [-9.80708805, -9.81192304, -9.81173453, -9.8134465 , -9.81576102, -9.82129326, -9.81814347, -9.81922547, -9.81605869, -9.81544122], [-9.8086263 , -9.81353263, -9.81361253, -9.81483314, -9.8167848 , -9.82195351, -9.81847868, -9.81942261, -9.81616151, -9.81552405], [-9.81000082, -9.81494602, -9.8149696 , -9.81627311, -9.81753526, -9.822488 , -9.81874248, -9.81961309, -9.81627767, -9.81558213], [-9.811283 , -9.81618416, -9.8160924 , -9.81738357, -9.81813238, -9.82287196, -9.81896913, -9.81973976, -9.81641382, -9.81564972], [-9.81232341, -9.81751945, -9.81695141, -9.81812165, -9.81863142, -9.82316064, -9.81916531, -9.81985595, -9.81655949, -9.81571827], [-9.81308587, -9.81841663, -9.81761137, -9.81865783, -9.81905426, -9.82345218, -9.81933482, -9.81997595, -9.81669564, -9.81578206], [-9.81370269, -9.81901856, -9.8182961 , -9.81915401, -9.81941235, -9.82368846, -9.81948053, -9.82009976, -9.81685559, -9.8159382 ], [-9.81447943, -9.81950144, -9.81872655, -9.81955686, -9.81973615, -9.82394856, -9.81963481, -9.82026357, -9.81700983, -9.81624667], [-9.81515621, -9.81993098, -9.81912463, -9.81990447, -9.8200809 , -9.82415244, -9.81980908, -9.82048834, -9.81714408, -9.81675697], [-9.815655 , -9.82034909, -9.81946556, -9.82025303, -9.82040661, -9.82432108, -9.81997955, -9.82075215, -9.8173602 , -9.81730441], [-9.8160072 , -9.8208472 , -9.81973888, -9.82057874, -9.82063232, -9.82450686, -9.8201662 , -9.82097977, -9.81763917, -9.81757955], [-9.81627468, -9.82106531, -9.81998649, -9.82090826, -9.82087041, -9.82470122, -9.82041476, -9.82124835, -9.81792765, -9.81788421], [-9.81643459, -9.8212777 , -9.82035409, -9.82121873, -9.82116754, -9.82496323, -9.82070998, -9.82155026, -9.8182885 , -9.81819173], [-9.81666685, -9.82155676, -9.82067217, -9.82146253, -9.82141325, -9.82522618, -9.82102996, -9.82181883, -9.81859888, -9.81851638], [-9.81692291, -9.82203487, -9.82099024, -9.82168824, -9.82163896, -9.82551296, -9.8213128 , -9.82215122, -9.8189483 , -9.81880295], [-9.81722085, -9.82242727, -9.82129404, -9.82189681, -9.82187324, -9.8258388 , -9.82160803, -9.82245693, -9.81922821, -9.81904002], [-9.81747119, -9.82276252, -9.8216064 , -9.82208062, -9.82215418, -9.82616654, -9.82197277, -9.82270932, -9.81945005, -9.81936372], [-9.81760065, -9.82305777, -9.8218921 , -9.82230633, -9.82241703, -9.82644284, -9.8221699 , -9.82298742, -9.81966713, -9.81960173], [-9.81771583, -9.82347302, -9.82216161, -9.82260346, -9.8227056 , -9.82669627, -9.82235084, -9.82322456, -9.81989754, -9.8198645 ], [-9.81783005, -9.82370541, -9.82243303, -9.82280917, -9.82298559, -9.82692683, -9.82252416, -9.82346933, -9.82020316, -9.82010442], [-9.81802043, -9.82388066, -9.82267206, -9.82301488, -9.82322749, -9.82717835, -9.82275177, -9.82371314, -9.82048212, -9.82029769], [-9.81821176, -9.82400828, -9.82285205, -9.82323869, -9.82343415, -9.82733556, -9.82296033, -9.82394838, -9.82072015, -9.8204862 ], [-9.81839642, -9.82411591, -9.82305299, -9.82345964, -9.82363605, -9.82752039, -9.82318127, -9.82411029, -9.82092485, -9.82070517], [-9.81858204, -9.82423496, -9.82322727, -9.82371582, -9.82380842, -9.82770713, -9.82339268, -9.82425124, -9.82111812, -9.8209289 ], [-9.81882668, -9.8243502 , -9.82342536, -9.82392725, -9.82398175, -9.82789386, -9.82357362, -9.82440839, -9.82131616, -9.82114407], [-9.81902181, -9.82445116, -9.82363201, -9.82411486, -9.82413223, -9.82807679, -9.82376123, -9.82457315, -9.82148373, -9.8212964 ], [-9.81919791, -9.82453116, -9.82380724, -9.8242501 , -9.82427698, -9.82827591, -9.82394408, -9.82474458, -9.8216313 , -9.82144873], [-9.81935402, -9.82461593, -9.82398342, -9.82438343, -9.8244065 , -9.82841597, -9.82411931, -9.82487601, -9.82176745, -9.8215944 ], [-9.81949014, -9.8247245 , -9.82413103, -9.82453676, -9.82453888, -9.82857317, -9.82429739, -9.82498744, -9.82189599, -9.8217115 ], [-9.81963102, -9.82487022, -9.82426722, -9.8246758 , -9.82467888, -9.82868845, -9.82446024, -9.82509887, -9.82201405, -9.82182099], [-9.8197481 , -9.82505594, -9.82439673, -9.82481199, -9.82478935, -9.82878944, -9.82459166, -9.82519887, -9.82213306, -9.82193809]])
- bs(longitude)float64-9.767 -9.775 ... -9.793 -9.795
- long_name :
- Potential Density (If > 16 obs)
- history :
- From meanfit2
- units :
- kg/m3
array([-9.76667015, -9.77473014, -9.77608781, -9.78219568, -9.78431232, -9.79081501, -9.78936324, -9.79364135, -9.79332074, -9.79525847])
- beuc(longitude)float64-9.81 -9.81 -9.81 ... -9.81 -9.81
- long_name :
- Potential Density (If > 16 obs)
- history :
- From meanfit2
- units :
- kg/m3
array([-9.81, -9.81, -9.81, -9.81, -9.81, -9.81, -9.81, -9.81, -9.81, -9.81])
- db(longitude)float640.04333 0.03527 ... 0.01668 0.01474
- long_name :
- $\Delta$b
- history :
- From meanfit2
- units :
- kg/m3
array([0.04332985, 0.03526986, 0.03391219, 0.02780432, 0.02568768, 0.01918499, 0.02063676, 0.01635865, 0.01667926, 0.01474153])
- Rib(longitude)float6457.7 39.51 37.72 ... 1.929 2.307
array([57.69520508, 39.50630823, 37.72013662, 10.21731178, 3.07548718, 1.52116955, 1.41671203, 1.18509875, 1.92855819, 2.30654635])
- history :
- FERRET V5.41 1-Oct-02
- name :
- Johnson
TAO daily → full average#
# need to fill to the surface
tao_adcp = pump.obs.read_tao_adcp().mean("time").bfill("depth")
tao_adcp["eucmax"] = pump.get_euc_max(tao_adcp.u)
tao_ctd_raw = (
pump.obs.read_tao()
.sel(latitude=0, longitude=tao_adcp.longitude)
.sortby("depth")
.chunk({"depth": -1})
.pipe(dcpy.interpolate.pchip_fillna, dim="depth")
.drop(["u", "v"])
.mean("time")
.compute()
)
tao_ctd = tao_ctd.ffill("depth")
tao_ctd["dens"] = pump.mdjwf.dens(np.array(35.0), tao_ctd.temp, tao_ctd.depth)
tao_ctd["eucmax"] = tao_adcp.eucmax
tao_daily = xr.merge(
[
pump.calc.estimate_euc_depth_terms(tao_adcp)[
["h", "us", "ueuc", "du", "eucmax"]
],
pump.calc.estimate_euc_depth_terms(tao_ctd)[["bs", "beuc", "db"]],
]
)
tao_daily = pump.calc.estimate_Rib(tao_daily)
tao_daily.attrs["name"] = "TAO"
tao_daily.load()
/glade/u/home/dcherian/pump/pump/obs.py:190: FutureWarning: In xarray version 0.15 the default behaviour of `open_mfdataset`
will change. To retain the existing behavior, pass
combine='nested'. To use future default behavior, pass
combine='by_coords'. See
http://xarray.pydata.org/en/stable/combining.html#combining-multi
chunks={"lat": 1, "lon": 1, "depth": 5},
/gpfs/u/home/dcherian/python/xarray/xarray/backends/api.py:933: FutureWarning: The datasets supplied have global dimension coordinates. You may want
to use the new `combine_by_coords` function (or the
`combine='by_coords'` option to `open_mfdataset`) to order the datasets
before concatenation. Alternatively, to continue concatenating based
on the order the datasets are supplied in future, please use the new
`combine_nested` function (or the `combine='nested'` option to
open_mfdataset).The datasets supplied require both concatenation and merging. From
xarray version 0.15 this will operation will require either using the
new `combine_nested` function (or the `combine='nested'` option to
open_mfdataset), with a nested list structure such that you can combine
along the dimensions None. Alternatively if your datasets have global
dimension coordinates then you can use the new `combine_by_coords`
function.
from_openmfds=True,
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/dask/array/core.py:3855: PerformanceWarning: Increasing number of chunks by factor of 15
**blockwise_kwargs
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/dask/array/core.py:3855: PerformanceWarning: Increasing number of chunks by factor of 15
**blockwise_kwargs
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/dask/array/core.py:3855: PerformanceWarning: Increasing number of chunks by factor of 15
**blockwise_kwargs
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/dask/array/core.py:3855: PerformanceWarning: Increasing number of chunks by factor of 15
**blockwise_kwargs
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/dask/array/core.py:3855: PerformanceWarning: Increasing number of chunks by factor of 15
**blockwise_kwargs
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/dask/array/core.py:3855: PerformanceWarning: Increasing number of chunks by factor of 15
**blockwise_kwargs
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/dask/array/core.py:3855: PerformanceWarning: Increasing number of chunks by factor of 15
**blockwise_kwargs
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/dask/array/core.py:3855: PerformanceWarning: Increasing number of chunks by factor of 11
**blockwise_kwargs
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/dask/array/core.py:3855: PerformanceWarning: Increasing number of chunks by factor of 10
**blockwise_kwargs
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/dask/array/core.py:3855: PerformanceWarning: Increasing number of chunks by factor of 11
**blockwise_kwargs
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/dask/array/core.py:3855: PerformanceWarning: Increasing number of chunks by factor of 10
**blockwise_kwargs
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/dask/array/core.py:3855: PerformanceWarning: Increasing number of chunks by factor of 11
**blockwise_kwargs
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/dask/array/core.py:3855: PerformanceWarning: Increasing number of chunks by factor of 10
**blockwise_kwargs
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/dask/array/core.py:3855: PerformanceWarning: Increasing number of chunks by factor of 11
**blockwise_kwargs
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/dask/array/core.py:3855: PerformanceWarning: Increasing number of chunks by factor of 11
**blockwise_kwargs
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/dask/array/core.py:3855: PerformanceWarning: Increasing number of chunks by factor of 11
**blockwise_kwargs
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/dask/array/core.py:3855: PerformanceWarning: Increasing number of chunks by factor of 11
**blockwise_kwargs
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/dask/array/core.py:3855: PerformanceWarning: Increasing number of chunks by factor of 11
**blockwise_kwargs
/glade/u/home/dcherian/miniconda3/envs/dcpy/lib/python3.6/site-packages/dask/array/core.py:3855: PerformanceWarning: Increasing number of chunks by factor of 11
**blockwise_kwargs
- longitude: 6
- longitude(longitude)float64-213.0 -204.0 ... -140.0 -110.0
- FORTRAN_format :
- units :
- degree_east
- type :
- UNEVEN
- epic_code :
- 502
array([-213., -204., -195., -170., -140., -110.])
- latitude()float640.0
- FORTRAN_format :
- units :
- degree_north
- type :
- UNEVEN
- epic_code :
- 500
array(0.)
- h(longitude)float32-200.0 -175.0 ... -80.0 -50.0
- FORTRAN_format :
- units :
- m
- type :
- UNEVEN
- epic_code :
- 3
- positive :
- down
- standard_name :
- depth
- long_name :
- $h$
array([-200., -175., -170., -130., -80., -50.], dtype=float32)
- us(longitude)float32-0.06934669 ... 0.19134645
- name :
- U
- long_name :
- u
- generic_name :
- u
- FORTRAN_format :
- f10.2
- units :
- m/s
- epic_code :
- 1205
array([-0.06934669, 0.09375758, 0.0036 , -0.13630131, -0.04317025, 0.19134645], dtype=float32)
- ueuc(longitude)float320.33551154 0.4491259 ... 0.9650307
- name :
- U
- long_name :
- u
- generic_name :
- u
- FORTRAN_format :
- f10.2
- units :
- m/s
- epic_code :
- 1205
array([0.33551154, 0.4491259 , 0.49320757, 0.6898067 , 1.0492624 , 0.9650307 ], dtype=float32)
- du(longitude)float32-0.40485823 ... -0.77368426
- name :
- U
- long_name :
- $\Delta$u
- generic_name :
- u
- FORTRAN_format :
- f10.2
- units :
- m/s
- epic_code :
- 1205
array([-0.40485823, -0.35536832, -0.48960757, -0.826108 , -1.0924326 , -0.77368426], dtype=float32)
- eucmax(longitude)float32-225.0 -200.0 ... -105.0 -75.0
- FORTRAN_format :
- units :
- m
- type :
- UNEVEN
- epic_code :
- 3
- positive :
- down
- standard_name :
- depth
- long_name :
- Depth of EUC max
array([-225., -200., -195., -155., -105., -75.], dtype=float32)
- bs(longitude)float64-9.782 -9.783 ... -9.8 -9.801
array([-9.78216727, -9.78328942, -9.78441106, -9.79413096, -9.79995362, -9.80081719])
- beuc(longitude)float64-9.81 -9.81 -9.81 -9.81 -9.81 -9.81
array([-9.81, -9.81, -9.81, -9.81, -9.81, -9.81])
- db(longitude)float640.02783 0.02671 ... 0.009183
- long_name :
- $\Delta$b
array([0.02783273, 0.02671058, 0.02558894, 0.01586904, 0.01004638, 0.00918281])
- Rib(longitude)float6433.96 37.01 18.15 ... 0.6735 0.767
array([33.96095672, 37.01382707, 18.14700667, 3.02287714, 0.67345763, 0.76704032])
- name :
- TAO
TAO hourly → average#
tao_clim = tao.mean("time")
tao_clim["eucmax"] = pump.calc.get_euc_max(tao_clim.u)
tao_clim = pump.calc.estimate_euc_depth_terms(tao_clim)
tao_clim.attrs["name"] = "TAO"
tao_clim.load()
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-8-f60f543c3aa6> in <module>
----> 1 tao_clim = tao.mean("time")
2 tao_clim["eucmax"] = pump.calc.get_euc_max(tao_clim.u)
3 tao_clim = pump.calc.estimate_euc_depth_terms(tao_clim)
4 tao_clim.attrs["name"] = "TAO"
5 tao_clim.load()
NameError: name 'tao' is not defined
seasonal = tao_zeuc.reset_coords().groupby("time.season")
seasonal_mean = (
seasonal.mean()
.where(seasonal.count() > 90 * 24)
.reindex(season=["DJF", "MAM", "JJA", "SON"])
)
seasonal_mean.load()
- longitude: 5
- season: 4
- zeuc: 59
- season(season)object'DJF' 'MAM' 'JJA' 'SON'
array(['DJF', 'MAM', 'JJA', 'SON'], dtype=object)
- longitude(longitude)float32-204.0 -195.0 -170.0 -140.0 -110.0
- FORTRAN_format :
- epic_code :
- 502
- type :
- EVEN
- units :
- degree_east
array([-204., -195., -170., -140., -110.], dtype=float32)
- zeuc(zeuc)float64-47.5 -42.5 -37.5 ... 237.5 242.5
array([-47.5, -42.5, -37.5, -32.5, -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5, 52.5, 57.5, 62.5, 67.5, 72.5, 77.5, 82.5, 87.5, 92.5, 97.5, 102.5, 107.5, 112.5, 117.5, 122.5, 127.5, 132.5, 137.5, 142.5, 147.5, 152.5, 157.5, 162.5, 167.5, 172.5, 177.5, 182.5, 187.5, 192.5, 197.5, 202.5, 207.5, 212.5, 217.5, 222.5, 227.5, 232.5, 237.5, 242.5])
- Rig(season, longitude, zeuc)float648.232 11.67 9.22 ... nan nan nan
array([[[ 8.23188423, 11.66693534, 9.2199752 , ..., nan, nan, nan], [ 5.39199295, 6.17876334, 9.64884943, ..., nan, nan, nan], [ 7.42184197, 9.00185298, 8.46085992, ..., nan, nan, nan], [ 3.16769126, 3.61574038, 4.74233788, ..., nan, nan, nan], [ 4.13980394, 5.66898608, 3.42710602, ..., nan, nan, nan]], [[16.09135028, 19.32650838, 12.35707371, ..., nan, nan, nan], [ 9.27719826, 10.23221501, 13.70622544, ..., nan, nan, nan], [ 5.86048199, 8.26245507, 19.05090364, ..., nan, nan, nan], [ 3.2191422 , 4.37541233, 7.60627121, ..., nan, nan, nan], [ 3.01226798, 2.17111758, 3.77887843, ..., nan, nan, nan]], [[ 8.15280434, 11.38067043, 13.40515286, ..., nan, nan, nan], [16.7003277 , 12.681034 , 17.97187299, ..., nan, nan, nan], [10.52417135, 14.17288604, 12.97217026, ..., nan, nan, nan], [ 4.16430575, 3.7978495 , 3.53947752, ..., nan, nan, nan], [ 2.61932804, 2.72024998, 1.87112047, ..., nan, nan, nan]], [[ nan, 7.55666118, 8.08289828, ..., nan, nan, nan], [ 7.5945738 , 8.45530595, 9.12148807, ..., nan, nan, nan], [ 8.79392536, 10.20514784, 18.54320167, ..., nan, nan, nan], [ 3.53384471, 3.13537092, 3.07702339, ..., nan, nan, nan], [ 3.34040942, 2.04296605, 4.76050517, ..., nan, nan, nan]]])
- T(season, longitude, zeuc)float6413.6 13.82 14.05 ... nan nan nan
array([[[13.60272677, 13.81765477, 14.04973421, ..., nan, nan, nan], [14.08051562, 14.29276024, 14.52687136, ..., nan, nan, nan], [15.2542054 , 15.61801237, 16.00534442, ..., nan, nan, nan], [14.98105297, 15.26082331, 15.57572854, ..., nan, nan, nan], [14.43238422, 14.63861674, 14.86944824, ..., nan, nan, nan]], [[13.97481721, 14.19923595, 14.43999648, ..., nan, nan, nan], [14.29960899, 14.58159836, 14.88873895, ..., nan, nan, nan], [16.10947125, 16.53365954, 16.98064405, ..., nan, nan, nan], [16.28010285, 16.68069373, 17.10365414, ..., nan, nan, nan], [15.11588387, 15.38952578, 15.69146173, ..., nan, nan, nan]], [[14.19124333, 14.43947054, 14.70428479, ..., nan, nan, nan], [14.28163924, 14.56672618, 14.87818235, ..., nan, nan, nan], [17.9633928 , 18.48842358, 19.02859569, ..., nan, nan, nan], [16.15290704, 16.55158269, 16.97285118, ..., nan, nan, nan], [14.51619274, 14.71310707, 14.92908578, ..., nan, nan, nan]], [[12.6385191 , 12.78170333, 12.94037027, ..., nan, nan, nan], [13.88075179, 14.10412266, 14.35778167, ..., nan, nan, nan], [16.51622736, 16.95323681, 17.40966696, ..., nan, nan, nan], [15.49465876, 15.81505731, 16.17081449, ..., nan, nan, nan], [14.36372388, 14.55920276, 14.77800993, ..., nan, nan, nan]]])
- deepest(season, longitude)float64-488.7 -470.1 ... -382.0 -440.7
- description :
- Deepest depth with a valid observation
array([[-488.66630489, -470.0749788 , -485.12395406, -394.45479812, -453.66072205], [-470.50151107, -482.30936133, -482.5794072 , -392.56670616, -436.78830981], [-475.17839168, -463.62734002, -482.56703611, -384.96835797, -434.83037643], [-485.60853278, -445.6635083 , -484.87393853, -381.97008146, -440.74396417]])
- dens(season, longitude, zeuc)float641.025e+03 1.025e+03 ... nan nan
array([[[1025.1896303 , 1025.16768973, 1025.14167951, ..., nan, nan, nan], [1025.08449148, 1025.06139572, 1025.03308078, ..., nan, nan, nan], [1024.93674242, 1024.87750392, 1024.81162896, ..., nan, nan, nan], [1025.24669046, 1025.2056233 , 1025.15589332, ..., nan, nan, nan], [1025.53061446, 1025.5070724 , 1025.477278 , ..., nan, nan, nan]], [[1025.1277713 , 1025.10257229, 1025.07330318, ..., nan, nan, nan], [1025.05683349, 1025.01862818, 1024.97423401, ..., nan, nan, nan], [1024.81368263, 1024.73644831, 1024.65230089, ..., nan, nan, nan], [1025.0442282 , 1024.97098636, 1024.89089167, ..., nan, nan, nan], [1025.45672745, 1025.41677536, 1025.36936394, ..., nan, nan, nan]], [[1025.12342782, 1025.09184337, 1025.05607605, ..., nan, nan, nan], [1025.08862056, 1025.04907768, 1025.00315553, ..., nan, nan, nan], [1024.47042669, 1024.36165382, 1024.24694065, ..., nan, nan, nan], [1025.04793835, 1024.97721026, 1024.89959033, ..., nan, nan, nan], [1025.51613849, 1025.49529673, 1025.46968208, ..., nan, nan, nan]], [[1025.2765685 , 1025.27099748, 1025.26213737, ..., nan, nan, nan], [1025.12477972, 1025.09915943, 1025.06675559, ..., nan, nan, nan], [1024.72226629, 1024.64149088, 1024.55441906, ..., nan, nan, nan], [1025.12174882, 1025.07006663, 1025.00958682, ..., nan, nan, nan], [1025.48958241, 1025.46909959, 1025.44283963, ..., nan, nan, nan]]])
- eucmax(season, longitude)float643.264 4.126 9.016 ... 2.976 6.241
- long_name :
- Depth of EUC max
- units :
- m
array([[3.26371055, 4.12596818, 9.01598885, 3.31033996, 2.98506559], [3.40345398, 7.1442146 , 4.77359422, 5.07933099, 7.94734066], [4.82000884, 2.81524375, 5.65678933, 4.5077701 , 3.09996866], [4.02397433, 2.98996519, 3.1331995 , 2.975802 , 6.24062509]])
- latitude(season)float32nan nan nan nan
- FORTRAN_format :
- epic_code :
- 500
- type :
- EVEN
- units :
- degree_north
array([nan, nan, nan, nan], dtype=float32)
- mld(season, longitude)float64-34.32 -34.82 ... -16.38 -11.45
array([[-34.32471144, -34.82282621, -29.48257394, -16.9969471 , -8.9511756 ], [-25.61249285, -23.50614987, -17.57099212, -10.65304839, -6.99384531], [-28.7099877 , -24.32255226, -22.45587298, -15.00682753, -9.89072025], [-23.79958377, -24.32021827, -21.79484468, -16.38221639, -11.45114781]])
- u(season, longitude, zeuc)float640.3643 0.389 0.4046 ... nan nan nan
array([[[0.36428954, 0.38895224, 0.4045924 , ..., nan, nan, nan], [0.2196237 , 0.24984855, 0.28538917, ..., nan, nan, nan], [0.48131255, 0.51611832, 0.55078659, ..., nan, nan, nan], [0.67239874, 0.71879344, 0.76604187, ..., nan, nan, nan], [0.5293649 , 0.57199532, 0.61529949, ..., nan, nan, nan]], [[0.34119612, 0.3584247 , 0.37808899, ..., nan, nan, nan], [0.39010054, 0.4151643 , 0.44226967, ..., nan, nan, nan], [0.61339652, 0.64884028, 0.68614529, ..., nan, nan, nan], [0.94794887, 1.00387485, 1.05941852, ..., nan, nan, nan], [0.79196506, 0.84939121, 0.90940154, ..., nan, nan, nan]], [[0.36428762, 0.38510103, 0.40287176, ..., nan, nan, nan], [0.42344114, 0.44910889, 0.47371738, ..., nan, nan, nan], [0.60324866, 0.64291183, 0.68139045, ..., nan, nan, nan], [0.7708133 , 0.82905148, 0.88847513, ..., nan, nan, nan], [0.59904537, 0.64696057, 0.69706435, ..., nan, nan, nan]], [[0.21821556, 0.23751159, 0.25679138, ..., nan, nan, nan], [0.27289732, 0.30022284, 0.3258028 , ..., nan, nan, nan], [0.5091764 , 0.54306584, 0.57568048, ..., nan, nan, nan], [0.6384854 , 0.68760622, 0.73845552, ..., nan, nan, nan], [0.54480893, 0.58868616, 0.63496933, ..., nan, nan, nan]]])
- v(season, longitude, zeuc)float64-0.009484 -0.007725 ... nan nan
array([[[-9.48372233e-03, -7.72504046e-03, -7.33564424e-03, ..., nan, nan, nan], [-2.91934285e-03, 1.29491931e-03, -1.05588421e-04, ..., nan, nan, nan], [ 3.80231364e-03, 4.25051604e-03, 5.62939756e-03, ..., nan, nan, nan], [-7.27330658e-03, -9.28644226e-03, -1.10784658e-02, ..., nan, nan, nan], [-9.57764338e-03, -1.12131392e-02, -1.30186725e-02, ..., nan, nan, nan]], [[-3.27018915e-03, -5.24507046e-03, -6.80652298e-03, ..., nan, nan, nan], [-2.62702513e-02, -2.91648296e-02, -3.20181966e-02, ..., nan, nan, nan], [ 8.69698067e-03, 1.33157619e-02, 1.80003830e-02, ..., nan, nan, nan], [-1.29115721e-02, -1.42213956e-02, -1.49717792e-02, ..., nan, nan, nan], [-2.30604146e-03, -1.97987091e-03, -1.11602583e-03, ..., nan, nan, nan]], [[-1.73465022e-02, -1.90855457e-02, -2.11728806e-02, ..., nan, nan, nan], [-3.14836084e-02, -3.53821270e-02, -3.75011088e-02, ..., nan, nan, nan], [-3.26231133e-02, -2.52453222e-02, -1.67267726e-02, ..., nan, nan, nan], [-7.30159134e-04, -1.65244324e-03, -3.93613844e-03, ..., nan, nan, nan], [ 1.02352609e-02, 1.04821181e-02, 1.02196271e-02, ..., nan, nan, nan]], [[ 4.70000001e-02, 4.73242333e-02, 4.39763077e-02, ..., nan, nan, nan], [ 3.20087828e-02, 2.77005340e-02, 2.16889121e-02, ..., nan, nan, nan], [-4.60854216e-04, -5.65226211e-04, -9.14556185e-04, ..., nan, nan, nan], [-8.19118300e-03, -8.81910597e-03, -8.73322434e-03, ..., nan, nan, nan], [-1.04267577e-03, -6.81707984e-05, 1.63465325e-03, ..., nan, nan, nan]]])
seasonal_mean["Rig_mean"] = seasonal_mean.Rig
seasonal_mean["depth"] = seasonal_mean.eucmax + seasonal_mean.zeuc
seasonal_mean = seasonal_mean.set_coords(["eucmax", "depth"])
seasonal_mean["Rig"] = pump.calc.calc_tao_ri(
seasonal_mean[["u", "v"]], seasonal_mean["T"], dim="zeuc"
)
/gpfs/u/home/dcherian/python/xarray/xarray/core/missing.py:329: FutureWarning: This DataArray contains multi-dimensional coordinates. In the future, these coordinates will be transposed as well unless you specify transpose_coords=False.
).transpose(*self.dims)
/gpfs/u/home/dcherian/python/xarray/xarray/core/missing.py:329: FutureWarning: This DataArray contains multi-dimensional coordinates. In the future, these coordinates will be transposed as well unless you specify transpose_coords=False.
).transpose(*self.dims)
/gpfs/u/home/dcherian/python/xarray/xarray/core/missing.py:329: FutureWarning: This DataArray contains multi-dimensional coordinates. In the future, these coordinates will be transposed as well unless you specify transpose_coords=False.
).transpose(*self.dims)
seasonal_mean["Rig_median"] = (
tao_zeuc.Rig.chunk({"time": -1})
.groupby("time.season")
.quantile(dim="time", q=0.5)
.compute()
)
/gpfs/u/home/dcherian/python/xarray/xarray/core/common.py:664: FutureWarning: This DataArray contains multi-dimensional coordinates. In the future, the dimension order of these coordinates will be restored as well unless you specify restore_coord_dims=False.
self, group, squeeze=squeeze, restore_coord_dims=restore_coord_dims
seasonal_mean["N2"] = -9.81 / 1025 * seasonal_mean.dens.differentiate("zeuc")
seasonal_mean["S2"] = (
seasonal_mean.u.differentiate("zeuc") ** 2
+ seasonal_mean.u.differentiate("zeuc") ** 2
)
(seasonal_mean.N2 / seasonal_mean.S2).plot(
col="longitude", hue="season", y="zeuc", xlim=[0.1, 100], xscale="log"
)
/gpfs/u/home/dcherian/python/xarray/xarray/plot/plot.py:107: FutureWarning: This DataArray contains multi-dimensional coordinates. In the future, these coordinates will be transposed as well unless you specify transpose_coords=False.
xplt = darray.transpose(ydim, huedim)
<xarray.plot.facetgrid.FacetGrid at 0x2b1984516470>

(seasonal_mean.T).plot(col="longitude", hue="season", y="zeuc")
(seasonal_mean.u).plot(col="longitude", hue="season", y="zeuc")
<xarray.plot.facetgrid.FacetGrid at 0x2b197e930828>


\(N²\) isn’t changing that much moving eastward consistent with the bulk \(Δb\). Shear \(S²\) is changing significantly, again consistent
(seasonal_mean.N2).plot(col="longitude", hue="season", y="zeuc")
(seasonal_mean.S2).plot(col="longitude", hue="season", y="zeuc")
(seasonal_mean.Rig_median).plot(
col="longitude", hue="season", y="zeuc", xlim=[0.1, 100], xscale="log"
)
/gpfs/u/home/dcherian/python/xarray/xarray/plot/plot.py:107: FutureWarning: This DataArray contains multi-dimensional coordinates. In the future, these coordinates will be transposed as well unless you specify transpose_coords=False.
xplt = darray.transpose(ydim, huedim)
<xarray.plot.facetgrid.FacetGrid at 0x2b1a3a5aa320>



counts = tao_zeuc.count("time").load()
counts.u.where(counts.u > 90 * 24).plot(x="longitude")
<matplotlib.collections.QuadMesh at 0x2b7387f5ee10>

annual_mean = (
tao_zeuc.groupby("time.year").mean().mean("year").load().where(counts > 90 * 24)
)
fg = (4 * -9.81 / 1025 * annual_mean.dens.differentiate("zeuc")).plot(
col="longitude", y="zeuc"
)
S2 = annual_mean.u.differentiate("zeuc") ** 2 + annual_mean.v.differentiate("zeuc") ** 2
for loc, ax in zip(fg.name_dicts.flat, fg.axes.flat):
ax.plot(S2.sel(loc), S2.zeuc)
# ax.set_xscale("log")
ax.legend(["4N²", "S²"])
<matplotlib.legend.Legend at 0x2b739ed77860>

counts = tao_zeuc.count("time")
tao_zeuc = tao_zeuc.where(counts > 30 * 24)
[<matplotlib.lines.Line2D at 0x2b19052c4748>,
<matplotlib.lines.Line2D at 0x2b192aa97cf8>,
<matplotlib.lines.Line2D at 0x2b192aa97ac8>,
<matplotlib.lines.Line2D at 0x2b1922eabb00>,
<matplotlib.lines.Line2D at 0x2b192b8d5278>]

zeuc_clim = pump.calc.calc_tao_ri(dim="zeuc")
- longitude: 5
- zeuc: 59
- latitude()float32...
- FORTRAN_format :
- epic_code :
- 500
- type :
- EVEN
- units :
- degree_north
array(0., dtype=float32)
- longitude(longitude)float32-204.0 -195.0 -170.0 -140.0 -110.0
- FORTRAN_format :
- epic_code :
- 502
- type :
- EVEN
- units :
- degree_east
array([-204., -195., -170., -140., -110.], dtype=float32)
- zeuc(zeuc)float64-47.5 -42.5 -37.5 ... 237.5 242.5
array([-47.5, -42.5, -37.5, -32.5, -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5, 52.5, 57.5, 62.5, 67.5, 72.5, 77.5, 82.5, 87.5, 92.5, 97.5, 102.5, 107.5, 112.5, 117.5, 122.5, 127.5, 132.5, 137.5, 142.5, 147.5, 152.5, 157.5, 162.5, 167.5, 172.5, 177.5, 182.5, 187.5, 192.5, 197.5, 202.5, 207.5, 212.5, 217.5, 222.5, 227.5, 232.5, 237.5, 242.5])
- Rig(longitude, zeuc)float64dask.array<chunksize=(1, 59), meta=np.ndarray>
Array Chunk Bytes 2.36 kB 472 B Shape (5, 59) (1, 59) Count 356 Tasks 5 Chunks Type float64 numpy.ndarray - T(longitude, zeuc)float64dask.array<chunksize=(1, 59), meta=np.ndarray>
Array Chunk Bytes 2.36 kB 472 B Shape (5, 59) (1, 59) Count 356 Tasks 5 Chunks Type float64 numpy.ndarray - dens(longitude, zeuc)float64dask.array<chunksize=(1, 59), meta=np.ndarray>
Array Chunk Bytes 2.36 kB 472 B Shape (5, 59) (1, 59) Count 356 Tasks 5 Chunks Type float64 numpy.ndarray - u(longitude, zeuc)float64dask.array<chunksize=(1, 59), meta=np.ndarray>
Array Chunk Bytes 2.36 kB 472 B Shape (5, 59) (1, 59) Count 356 Tasks 5 Chunks Type float64 numpy.ndarray - v(longitude, zeuc)float64dask.array<chunksize=(1, 59), meta=np.ndarray>
Array Chunk Bytes 2.36 kB 472 B Shape (5, 59) (1, 59) Count 356 Tasks 5 Chunks Type float64 numpy.ndarray
Figure 5#
tao_zeuc = xr.open_zarr("tao-zeuc.zarr")
tao_zeuc
- longitude: 5
- time: 292267
- zeuc: 59
- deepest(time, longitude)float64dask.array<chunksize=(10000, 1), meta=np.ndarray>
- description :
- Deepest depth with a valid observation
Array Chunk Bytes 11.69 MB 80.00 kB Shape (292267, 5) (10000, 1) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - eucmax(time, longitude)float64dask.array<chunksize=(10000, 1), meta=np.ndarray>
- long_name :
- Depth of EUC max
- units :
- m
Array Chunk Bytes 11.69 MB 80.00 kB Shape (292267, 5) (10000, 1) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - latitude()float32...
- FORTRAN_format :
- epic_code :
- 500
- type :
- EVEN
- units :
- degree_north
array(0., dtype=float32)
- longitude(longitude)float64-204.0 -195.0 -170.0 -140.0 -110.0
- FORTRAN_format :
- epic_code :
- 502
- type :
- EVEN
- units :
- degree_east
array([-204., -195., -170., -140., -110.])
- mld(time, longitude)float64dask.array<chunksize=(10000, 1), meta=np.ndarray>
Array Chunk Bytes 11.69 MB 80.00 kB Shape (292267, 5) (10000, 1) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - time(time)datetime64[ns]1985-10-01T06:00:00 ... 2019-02-03
- FORTRAN_format :
- point_spacing :
- even
- type :
- EVEN
array(['1985-10-01T06:00:00.000000000', '1985-10-01T07:00:00.000000000', '1985-10-01T08:00:00.000000000', ..., '2019-02-02T22:00:00.000000000', '2019-02-02T23:00:00.000000000', '2019-02-03T00:00:00.000000000'], dtype='datetime64[ns]')
- zeuc(zeuc)float64-47.5 -42.5 -37.5 ... 237.5 242.5
array([-47.5, -42.5, -37.5, -32.5, -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5, 52.5, 57.5, 62.5, 67.5, 72.5, 77.5, 82.5, 87.5, 92.5, 97.5, 102.5, 107.5, 112.5, 117.5, 122.5, 127.5, 132.5, 137.5, 142.5, 147.5, 152.5, 157.5, 162.5, 167.5, 172.5, 177.5, 182.5, 187.5, 192.5, 197.5, 202.5, 207.5, 212.5, 217.5, 222.5, 227.5, 232.5, 237.5, 242.5])
- Rig(time, longitude, zeuc)float64dask.array<chunksize=(10000, 1, 59), meta=np.ndarray>
Array Chunk Bytes 689.75 MB 4.72 MB Shape (292267, 5, 59) (10000, 1, 59) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - T(time, longitude, zeuc)float64dask.array<chunksize=(10000, 1, 59), meta=np.ndarray>
Array Chunk Bytes 689.75 MB 4.72 MB Shape (292267, 5, 59) (10000, 1, 59) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - dens(time, longitude, zeuc)float64dask.array<chunksize=(10000, 1, 59), meta=np.ndarray>
Array Chunk Bytes 689.75 MB 4.72 MB Shape (292267, 5, 59) (10000, 1, 59) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - u(time, longitude, zeuc)float64dask.array<chunksize=(10000, 1, 59), meta=np.ndarray>
Array Chunk Bytes 689.75 MB 4.72 MB Shape (292267, 5, 59) (10000, 1, 59) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - v(time, longitude, zeuc)float64dask.array<chunksize=(10000, 1, 59), meta=np.ndarray>
Array Chunk Bytes 689.75 MB 4.72 MB Shape (292267, 5, 59) (10000, 1, 59) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray
ri = tao_zeuc.Rig.compute().median("time")
ri.plot(hue="longitude", y="zeuc", xscale="log", xlim=(0.1, 100))
[<matplotlib.lines.Line2D at 0x2b1926f59ef0>,
<matplotlib.lines.Line2D at 0x2b192b8feb70>,
<matplotlib.lines.Line2D at 0x2b1944ed5a20>,
<matplotlib.lines.Line2D at 0x2b1944ed5d68>,
<matplotlib.lines.Line2D at 0x2b1944ed5c18>]

tao_zeuc = tao_zeuc.where(tao_zeuc.count("time") > 90 * 24)
Ri_q_annual = (
tao_zeuc.Rig.sel(zeuc=slice(0, None))
.chunk({"time": -1, "zeuc": -1})
.quantile(q=[0.25, 0.5, 0.75], dim=["time", "zeuc"])
)
Ri_q_annual.load()
- quantile: 3
- longitude: 5
- 0.8152 0.587 0.2669 0.2228 0.2682 ... 5.459 4.627 2.615 1.184 1.593
array([[0.81522617, 0.58695033, 0.26694281, 0.22278418, 0.26821389], [1.97553892, 1.58871084, 0.70549343, 0.41711624, 0.54069482], [5.45856488, 4.62699244, 2.61483129, 1.18364173, 1.5925003 ]])
- longitude(longitude)float64-204.0 -195.0 -170.0 -140.0 -110.0
- FORTRAN_format :
- epic_code :
- 502
- type :
- EVEN
- units :
- degree_east
array([-204., -195., -170., -140., -110.])
- quantile(quantile)float640.25 0.5 0.75
array([0.25, 0.5 , 0.75])
f, ax = pump.plot.plot_bulk_Ri_diagnosis(tao_clim, ls="none", marker="s")
pump.plot.plot_bulk_Ri_diagnosis(tao_daily, ls="none", marker="o", f=f, ax=ax)
pump.plot.plot_bulk_Ri_diagnosis(johnson, ls="none", marker="^", f=f, ax=ax)
# ri.sel(zeuc=slice(0,None)).mean("zeuc").plot(ax=ax["Rib"], color='k')
dccpy.plots.fill_between(
Ri_q_annual.sel(quantile=[0.25, 0.75]),
axis="y",
y="quantile",
x="longitude",
alpha=0.1,
ax=ax["Rib"],
color="k",
)
Ri_q_annual.sel(quantile=0.5).plot(color="k", ax=ax["Rib"], _labels=False)
# pump.plot.plot_bulk_Ri_diagnosis(johnson, ls="none", marker= '^', f=f, ax=ax)
[<matplotlib.lines.Line2D at 0x2b194600e278>]

tao = pump.obs.read_tao_zarr("ancillary")
tao
- depth: 101
- longitude: 5
- time: 292267
- deepest(time, longitude)float64dask.array<chunksize=(10000, 1), meta=np.ndarray>
- description :
- Deepest depth with a valid observation
Array Chunk Bytes 11.69 MB 80.00 kB Shape (292267, 5) (10000, 1) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - depth(depth)float64-500.0 -495.0 -490.0 ... -5.0 0.0
array([-500., -495., -490., -485., -480., -475., -470., -465., -460., -455., -450., -445., -440., -435., -430., -425., -420., -415., -410., -405., -400., -395., -390., -385., -380., -375., -370., -365., -360., -355., -350., -345., -340., -335., -330., -325., -320., -315., -310., -305., -300., -295., -290., -285., -280., -275., -270., -265., -260., -255., -250., -245., -240., -235., -230., -225., -220., -215., -210., -205., -200., -195., -190., -185., -180., -175., -170., -165., -160., -155., -150., -145., -140., -135., -130., -125., -120., -115., -110., -105., -100., -95., -90., -85., -80., -75., -70., -65., -60., -55., -50., -45., -40., -35., -30., -25., -20., -15., -10., -5., 0.])
- eucmax(time, longitude)float64dask.array<chunksize=(10000, 1), meta=np.ndarray>
- long_name :
- Depth of EUC max
- units :
- m
Array Chunk Bytes 11.69 MB 80.00 kB Shape (292267, 5) (10000, 1) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - latitude()float32...
- FORTRAN_format :
- epic_code :
- 500
- type :
- EVEN
- units :
- degree_north
array(0., dtype=float32)
- longitude(longitude)float64-204.0 -195.0 -170.0 -140.0 -110.0
- FORTRAN_format :
- epic_code :
- 502
- type :
- EVEN
- units :
- degree_east
array([-204., -195., -170., -140., -110.])
- mld(time, longitude)float64dask.array<chunksize=(10000, 1), meta=np.ndarray>
Array Chunk Bytes 11.69 MB 80.00 kB Shape (292267, 5) (10000, 1) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - time(time)datetime64[ns]1985-10-01T06:00:00 ... 2019-02-03
- FORTRAN_format :
- point_spacing :
- even
- type :
- EVEN
array(['1985-10-01T06:00:00.000000000', '1985-10-01T07:00:00.000000000', '1985-10-01T08:00:00.000000000', ..., '2019-02-02T22:00:00.000000000', '2019-02-02T23:00:00.000000000', '2019-02-03T00:00:00.000000000'], dtype='datetime64[ns]')
- zeuc(depth, time, longitude)float64dask.array<chunksize=(101, 10000, 1), meta=np.ndarray>
Array Chunk Bytes 1.18 GB 8.08 MB Shape (101, 292267, 5) (101, 10000, 1) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray
- Rig(time, longitude, depth)float64dask.array<chunksize=(10000, 1, 101), meta=np.ndarray>
- long_name :
- Ri
Array Chunk Bytes 1.18 GB 8.08 MB Shape (292267, 5, 101) (10000, 1, 101) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - T(time, longitude, depth)float64dask.array<chunksize=(10000, 1, 101), meta=np.ndarray>
Array Chunk Bytes 1.18 GB 8.08 MB Shape (292267, 5, 101) (10000, 1, 101) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - dens(time, longitude, depth)float64dask.array<chunksize=(10000, 1, 101), meta=np.ndarray>
Array Chunk Bytes 1.18 GB 8.08 MB Shape (292267, 5, 101) (10000, 1, 101) Count 12603 Tasks 150 Chunks Type float64 numpy.ndarray - u(time, depth, longitude)float32dask.array<chunksize=(10000, 101, 1), meta=np.ndarray>
- FORTRAN_format :
- epic_code :
- 1205
- generic_name :
- u
- long_name :
- u
- name :
- u
- units :
- m/s
Array Chunk Bytes 590.38 MB 4.04 MB Shape (292267, 101, 5) (10000, 101, 1) Count 151 Tasks 150 Chunks Type float32 numpy.ndarray - v(time, depth, longitude)float32dask.array<chunksize=(10000, 101, 1), meta=np.ndarray>
- FORTRAN_format :
- epic_code :
- 1206
- generic_name :
- v
- long_name :
- v
- name :
- v
- units :
- m/s
Array Chunk Bytes 590.38 MB 4.04 MB Shape (292267, 101, 5) (10000, 101, 1) Count 151 Tasks 150 Chunks Type float32 numpy.ndarray
tao_bulked = pump.calc.estimate_euc_depth_terms(tao)
tao
/gpfs/u/home/dcherian/python/xarray/xarray/core/missing.py:393: FutureWarning: This DataArray contains multi-dimensional coordinates. In the future, these coordinates will be transposed as well unless you specify transpose_coords=False.
).transpose(*arr.dims)
- depth: 101
- longitude: 5
- time: 292267
- deepest(time, longitude)float64nan nan nan ... nan -500.0 -500.0
- description :
- Deepest depth with a valid observation
array([[ nan, nan, nan, nan, -300.], [ nan, nan, nan, nan, -300.], [ nan, nan, nan, nan, -300.], ..., [ nan, -500., nan, -500., -500.], [ nan, -500., nan, -500., -500.], [ nan, -500., nan, -500., -500.]])
- depth(depth)float64-500.0 -495.0 -490.0 ... -5.0 0.0
array([-500., -495., -490., -485., -480., -475., -470., -465., -460., -455., -450., -445., -440., -435., -430., -425., -420., -415., -410., -405., -400., -395., -390., -385., -380., -375., -370., -365., -360., -355., -350., -345., -340., -335., -330., -325., -320., -315., -310., -305., -300., -295., -290., -285., -280., -275., -270., -265., -260., -255., -250., -245., -240., -235., -230., -225., -220., -215., -210., -205., -200., -195., -190., -185., -180., -175., -170., -165., -160., -155., -150., -145., -140., -135., -130., -125., -120., -115., -110., -105., -100., -95., -90., -85., -80., -75., -70., -65., -60., -55., -50., -45., -40., -35., -30., -25., -20., -15., -10., -5., 0.])
- eucmax(time, longitude)float64nan nan nan nan ... nan nan nan nan
- long_name :
- Depth of EUC max
- units :
- m
array([[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]])
- latitude()float320.0
- FORTRAN_format :
- epic_code :
- 500
- type :
- EVEN
- units :
- degree_north
array(0., dtype=float32)
- longitude(longitude)float64-204.0 -195.0 -170.0 -140.0 -110.0
- FORTRAN_format :
- epic_code :
- 502
- type :
- EVEN
- units :
- degree_east
array([-204., -195., -170., -140., -110.])
- mld(time, longitude)float64nan nan nan nan ... nan -5.0 -5.0
array([[ nan, nan, nan, nan, -5.], [ nan, nan, nan, nan, -10.], [ nan, nan, nan, nan, -10.], ..., [ nan, -75., nan, -5., -5.], [ nan, -70., nan, -5., -5.], [ nan, -20., nan, -5., -5.]])
- time(time)datetime64[ns]1985-10-01T06:00:00 ... 2019-02-03
- FORTRAN_format :
- point_spacing :
- even
- type :
- EVEN
array(['1985-10-01T06:00:00.000000000', '1985-10-01T07:00:00.000000000', '1985-10-01T08:00:00.000000000', ..., '2019-02-02T22:00:00.000000000', '2019-02-02T23:00:00.000000000', '2019-02-03T00:00:00.000000000'], dtype='datetime64[ns]')
- zeuc(depth, time, longitude)float64nan nan nan nan ... nan nan nan nan
array([[[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]], [[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]], [[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]], ..., [[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]], [[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]], [[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]]])
- Rig(time, longitude, depth)float64dask.array<chunksize=(10000, 1, 101), meta=np.ndarray>
- long_name :
- Ri
Array Chunk Bytes 1.18 GB 8.08 MB Shape (292267, 5, 101) (10000, 1, 101) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - T(time, longitude, depth)float64dask.array<chunksize=(10000, 1, 101), meta=np.ndarray>
Array Chunk Bytes 1.18 GB 8.08 MB Shape (292267, 5, 101) (10000, 1, 101) Count 151 Tasks 150 Chunks Type float64 numpy.ndarray - dens(time, longitude, depth)float64nan nan nan ... 1.023e+03 1.023e+03
array([[[ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., 1024.33543851, 1024.33967453, 1024.35413187]], [[ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., 1024.3464451 , 1024.35640034, 1024.3734441 ]], [[ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., nan, nan, nan], [ nan, nan, nan, ..., 1024.3244193 , 1024.33437141, 1024.35136962]], ..., [[ nan, nan, nan, ..., nan, nan, nan], [1024.94435893, 1024.95764404, 1024.97049226, ..., 1021.64220484, 1021.6638762 , 1021.68548079], [ nan, nan, nan, ..., nan, nan, nan], [1024.94513327, 1024.95531438, 1024.96528946, ..., 1022.99817359, 1023.00538323, 1023.01015802], [1024.98458 , 1024.99185912, 1024.99910105, ..., 1023.33459766, 1023.28636123, 1023.19881184]], [[ nan, nan, nan, ..., nan, nan, nan], [1024.94503828, 1024.95895975, 1024.97242195, ..., 1021.63853494, 1021.65993884, 1021.68108452], [ nan, nan, nan, ..., nan, nan, nan], [1024.95064659, 1024.96189193, 1024.97287058, ..., 1022.99077391, 1022.99297478, 1022.99497685], [1024.98441046, 1024.99211456, 1024.9997781 , ..., 1023.32363328, 1023.25076443, 1023.19209542]], [[ nan, nan, nan, ..., nan, nan, nan], [1024.94518178, 1024.95882619, 1024.9720516 , ..., 1021.63156833, 1021.64964326, 1021.66928559], [ nan, nan, nan, ..., nan, nan, nan], [1024.93238447, 1024.94365735, 1024.95468325, ..., 1022.97905259, 1022.97606375, 1022.97611193], [1024.98412292, 1024.99102948, 1024.99790102, ..., 1023.30729996, 1023.21705942, 1023.19130163]]])
- u(time, depth, longitude)float32nan nan nan nan ... nan nan nan nan
- FORTRAN_format :
- epic_code :
- 1205
- generic_name :
- u
- long_name :
- u
- name :
- u
- units :
- m/s
array([[[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]], [[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]], [[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]], ..., [[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]], [[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]], [[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]]], dtype=float32)
- v(time, depth, longitude)float32dask.array<chunksize=(10000, 101, 1), meta=np.ndarray>
- FORTRAN_format :
- epic_code :
- 1206
- generic_name :
- v
- long_name :
- v
- name :
- v
- units :
- m/s
Array Chunk Bytes 590.38 MB 4.04 MB Shape (292267, 101, 5) (10000, 101, 1) Count 151 Tasks 150 Chunks Type float32 numpy.ndarray - h(time, longitude)float64nan nan nan nan ... nan nan nan nan
- long_name :
- $h$
- units :
- m
array([[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]])
- us(time, longitude)float32nan nan nan nan ... nan nan nan nan
- FORTRAN_format :
- epic_code :
- 1205
- generic_name :
- u
- long_name :
- u
- name :
- u
- units :
- m/s
array([[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]], dtype=float32)
- ueuc(time, longitude)float32nan nan nan nan ... nan nan nan nan
- FORTRAN_format :
- epic_code :
- 1205
- generic_name :
- u
- long_name :
- u
- name :
- u
- units :
- m/s
array([[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]], dtype=float32)
- du(time, longitude)float32nan nan nan nan ... nan nan nan nan
- FORTRAN_format :
- epic_code :
- 1205
- generic_name :
- u
- long_name :
- $\Delta$u
- name :
- u
- units :
- m/s
array([[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]], dtype=float32)
- dens_euc(time, longitude)float64nan nan nan nan ... nan nan nan nan
array([[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]])
- b(time, longitude, depth)float64nan nan nan nan ... nan nan nan nan
array([[[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], [[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], [[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], ..., [[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], [[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], [[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]]])
- bs(time, longitude)float64nan nan nan nan ... nan nan nan nan
array([[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]])
- beuc(time, longitude)float64-9.81 -9.81 -9.81 ... -9.81 -9.81
array([[-9.81, -9.81, -9.81, -9.81, -9.81], [-9.81, -9.81, -9.81, -9.81, -9.81], [-9.81, -9.81, -9.81, -9.81, -9.81], ..., [-9.81, -9.81, -9.81, -9.81, -9.81], [-9.81, -9.81, -9.81, -9.81, -9.81], [-9.81, -9.81, -9.81, -9.81, -9.81]])
- db(time, longitude)float64nan nan nan nan ... nan nan nan nan
- long_name :
- $\Delta$b
array([[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]])
- Rib(time, longitude)float64nan nan nan nan ... nan nan nan nan
array([[nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], ..., [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan]])
tao.us.plot(x="time")
<matplotlib.collections.QuadMesh at 0x2b736a5ef668>
